Advertisement

STC12交流信号采集电路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本设计提供了一种基于STC12单片机的交流信号采集电路方案,适用于电力系统监测、工业控制等领域,能够高效准确地捕捉和处理模拟信号。 ### STC12交流信号采样电路图解析 #### 一、概述 本段落将详细介绍一个基于STC12单片机的交流信号采样电路设计。该电路的主要目的是实现对交流信号的有效采样,以便后续的数据处理和分析。在电路设计中,采用了一系列精密电阻、电容和其他元件来确保信号采样的准确性和稳定性。 #### 二、电路结构及原理 ##### 2.1 整体框架 根据提供的电路图内容,可以看出整个电路由多个独立但相互关联的模块组成,每个模块负责采集一路交流信号,并将其转换为适合单片机处理的形式。具体来说,整个电路包括以下几大部分: 1. **电源管理模块**:负责提供稳定的电源电压。 2. **信号调理模块**:包括多个独立的信号调理电路,用于将输入的交流信号转换为可被单片机读取的电压信号。 3. **接口电路**:包括RS485通信接口等,用于与外部设备进行数据交换。 ##### 2.2 电源管理模块 电源管理部分主要包括两个电压源:+5V 和 ±15V。其中+5V电源用于为单片机供电,而±15V则用于信号调理电路中的运算放大器等元件的供电。 - **+5V 电源**:通过VCC_+5V符号表示,为整个电路提供稳定的直流电源。 - **±15V 电源**:通过VCC=VCC_+15V 和 VCC=VCC_-15V 表示,用于为运算放大器UB1~UB4提供双电源供电,确保其正常工作。 ##### 2.3 信号调理模块 信号调理模块是该电路的核心部分,主要用于将交流信号转换为适合单片机处理的形式。每一组信号调理电路都包含以下几个关键组成部分: - **信号输入端**:通常标记为L(Live)和N(Neutral),即火线和零线。 - **信号采样电阻**:如RB1~RB24,用于将交流信号降压至安全范围内。 - **滤波电容**:如CB4、CB6、CB8、CB10、CB12、CB14、CB16等,用于滤除高频噪声,保证信号的纯净度。 - **运算放大器**:如UB1~UB4,用于对采样后的信号进行放大和处理。 每组信号调理电路最终输出的信号标记为Vout1~Vout8,这些信号可以直接送入单片机进行进一步的处理和分析。 ##### 2.4 接口电路 除了信号调理电路外,电路图还包含了RS485通信接口的部分,用于与外部设备进行通信。这一部分主要包括以下组件: - **RS485差分信号线**:通过485-和485+表示,用于发送和接收数据。 - **RS485电源**:通过VCC_+5V表示,为RS485接口提供必要的工作电压。 - **接地参考点**:通过GND_485表示,作为RS485通信的公共地线。 #### 三、电路工作原理详解 ##### 3.1 信号调理过程 信号调理电路的工作流程大致如下: 1. **信号降压**:交流信号通过采样电阻(如RB1~RB24)降压到安全范围内的电压水平。 2. **信号滤波**:经过降压的信号通过滤波电容(如CB4、CB6等)去除高频噪声。 3. **信号放大**:滤波后的信号进入运算放大器(如UB1~UB4)进行放大处理,使得信号幅度符合后续处理的要求。 4. **信号输出**:最终输出的信号(Vout1~Vout8)可以送入单片机进行采样和处理。 ##### 3.2 RS485通信接口 RS485接口电路主要用于与外部设备进行通信,其工作原理如下: 1. **信号发送**:通过485+和485-两条差分信号线发送数据。 2. **信号接收**:同样通过这两条差分信号线接收来自外部设备的数据。 3. **电源供应**:通过VCC_+5V为RS485接口芯片供电。 4. **接地参考**:通过GND_485提供一个共同的接地参考点,保证数据传输的稳定性。 #### 四、结论 基于STC12单片机的交流信号采样电路是一种实用的设计方案,能够有效地对交流信号进行采样并进行相应的处理。通过合理的电路布局和元件选择,不仅可以提高信号采样的准确性

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STC12
    优质
    本设计提供了一种基于STC12单片机的交流信号采集电路方案,适用于电力系统监测、工业控制等领域,能够高效准确地捕捉和处理模拟信号。 ### STC12交流信号采样电路图解析 #### 一、概述 本段落将详细介绍一个基于STC12单片机的交流信号采样电路设计。该电路的主要目的是实现对交流信号的有效采样,以便后续的数据处理和分析。在电路设计中,采用了一系列精密电阻、电容和其他元件来确保信号采样的准确性和稳定性。 #### 二、电路结构及原理 ##### 2.1 整体框架 根据提供的电路图内容,可以看出整个电路由多个独立但相互关联的模块组成,每个模块负责采集一路交流信号,并将其转换为适合单片机处理的形式。具体来说,整个电路包括以下几大部分: 1. **电源管理模块**:负责提供稳定的电源电压。 2. **信号调理模块**:包括多个独立的信号调理电路,用于将输入的交流信号转换为可被单片机读取的电压信号。 3. **接口电路**:包括RS485通信接口等,用于与外部设备进行数据交换。 ##### 2.2 电源管理模块 电源管理部分主要包括两个电压源:+5V 和 ±15V。其中+5V电源用于为单片机供电,而±15V则用于信号调理电路中的运算放大器等元件的供电。 - **+5V 电源**:通过VCC_+5V符号表示,为整个电路提供稳定的直流电源。 - **±15V 电源**:通过VCC=VCC_+15V 和 VCC=VCC_-15V 表示,用于为运算放大器UB1~UB4提供双电源供电,确保其正常工作。 ##### 2.3 信号调理模块 信号调理模块是该电路的核心部分,主要用于将交流信号转换为适合单片机处理的形式。每一组信号调理电路都包含以下几个关键组成部分: - **信号输入端**:通常标记为L(Live)和N(Neutral),即火线和零线。 - **信号采样电阻**:如RB1~RB24,用于将交流信号降压至安全范围内。 - **滤波电容**:如CB4、CB6、CB8、CB10、CB12、CB14、CB16等,用于滤除高频噪声,保证信号的纯净度。 - **运算放大器**:如UB1~UB4,用于对采样后的信号进行放大和处理。 每组信号调理电路最终输出的信号标记为Vout1~Vout8,这些信号可以直接送入单片机进行进一步的处理和分析。 ##### 2.4 接口电路 除了信号调理电路外,电路图还包含了RS485通信接口的部分,用于与外部设备进行通信。这一部分主要包括以下组件: - **RS485差分信号线**:通过485-和485+表示,用于发送和接收数据。 - **RS485电源**:通过VCC_+5V表示,为RS485接口提供必要的工作电压。 - **接地参考点**:通过GND_485表示,作为RS485通信的公共地线。 #### 三、电路工作原理详解 ##### 3.1 信号调理过程 信号调理电路的工作流程大致如下: 1. **信号降压**:交流信号通过采样电阻(如RB1~RB24)降压到安全范围内的电压水平。 2. **信号滤波**:经过降压的信号通过滤波电容(如CB4、CB6等)去除高频噪声。 3. **信号放大**:滤波后的信号进入运算放大器(如UB1~UB4)进行放大处理,使得信号幅度符合后续处理的要求。 4. **信号输出**:最终输出的信号(Vout1~Vout8)可以送入单片机进行采样和处理。 ##### 3.2 RS485通信接口 RS485接口电路主要用于与外部设备进行通信,其工作原理如下: 1. **信号发送**:通过485+和485-两条差分信号线发送数据。 2. **信号接收**:同样通过这两条差分信号线接收来自外部设备的数据。 3. **电源供应**:通过VCC_+5V为RS485接口芯片供电。 4. **接地参考**:通过GND_485提供一个共同的接地参考点,保证数据传输的稳定性。 #### 四、结论 基于STC12单片机的交流信号采样电路是一种实用的设计方案,能够有效地对交流信号进行采样并进行相应的处理。通过合理的电路布局和元件选择,不仅可以提高信号采样的准确性
  • 4-20mA原理+PCB+代码
    优质
    本资源提供详细的4-20mA电流信号采集电路设计,包括原理图、PCB布局及配套程序代码,适用于工业自动化测量系统开发。 电流信号采集电路采用4-20mA标准,主控芯片为STM32F103,并通过RS485进行数据输出。提供原理图及PCB源文件(使用AD设计),包含ADC采样代码、RS485通信代码等,并具备隔离功能。此外,精通各种运放的使用,支持其他类型的采集电路和基于STM32主控芯片的设计定制服务。
  • 高频设计
    优质
    本项目专注于高频交流信号的有效采样技术研究与应用,旨在设计一种高精度、低延迟的采样电路,适用于各种电子测量和控制系统。 在高频电源设计过程中,经常需要对高频交流信号进行采样。传统的采样电路既可以用于电压采样也可以用于电流采样。在这个电路里,变压器可以用来降压以适应电压采样的需求,而互感器则适用于将高电平的电流降低到可测量范围内的低电平电流。 对于使用变压器的情况,在输入端口接收到较低的电压时,由于整流二极管的存在会产生一定的电压降。这会导致经过变压器转换后的输出电压偏低,并且在低压环境下误差会增大。而对于互感器来说,在原边电流较小的情况下,同样因为存在二极管的原因可能会引起相位上的误差。 总体而言,无论是采用变压器还是互感器进行采样时都需要注意这些潜在的误差来源并根据实际应用需求做出相应的调整和优化处理。
  • 设计
    优质
    本项目旨在设计用于捕捉人体肌肉活动信号的高效电路。通过优化肌电传感器与放大器模块,确保获取准确、稳定的生物电信号,为后续分析提供坚实基础。 SEMG肌电采集板包括原理图和PCB设计。其原理图包含前置放大电路、滤波电路、二级放大电路以及电平抬升电路。 前置放大电路由仪表放大器构成,通过电极板采集微弱的SEMG信号(0~2mv)。滤波电路则包含了二阶有源高通滤波和二阶有源低通滤波,并且具备50Hz工频干扰过滤功能。这些设计可以有效去除低于20Hz、等于50Hz以及高于500Hz的噪声,确保信号纯净度。 经过二级放大电路后输出较为干净的SEMG信号(-1~1v),然后通过电平抬升电路将该信号提升至适合单片机采集的标准范围:0~2v。整个系统设计灵活,可以调整滤波电阻和电容以适应不同的频段需求。
  • STM320-20mA
    优质
    本项目介绍如何使用STM32微控制器精确采集0-20mA电流信号,并展示相关硬件电路设计及软件编程技巧。 在项目开发过程中,经常会遇到输出信号为0-20mA或4-20mA的工业传感器,例如压力变送器。使用这类传感器通常需要利用单片机的ADC采集功能,并通过欧姆定律计算出电流值:将采集到的电压值与采样电阻阻值相除得出电流大小。 主控采用STM32G030F6P6芯片,在设计中,我们测试了两种不同的电路来实现信号采集。这两种方法的具体内容已经经过分析和验证。
  • 基于STM32的编程
    优质
    本项目基于STM32微控制器,设计实现了一套高效的交流信号数据采集与处理系统,涵盖硬件电路搭建及软件程序开发。 基于STM32F103的交流采集程序通过ADC采集、DMA传输、软件滤波以及均方根计算直接得出交流信号的有效值,亲测效果良好且算法简单高效。每一步所需时间在代码中均有详细标注,便于使用和调试。
  • dldy.rar_C# NI_LabVIEW创建Excel_LabVIEW_LabVIEW
    优质
    本资源包包含C#与NI数据采集、LabVIEW创建Excel表格及通过LabVIEW进行电压和电流信号采集的相关示例代码,适用于科研与工程开发。 使用NI-6008采集电压电流信号,并在C盘创建一个EXCEL文件进行保存。
  • LM324分配放大器
    优质
    本设计提供了一个基于LM324运算放大器构建的交流信号三路分配放大器电路方案,适用于音频设备或测试仪器中的信号复制与传输。 本段落主要介绍了LM324交流信号三分配放大器电路图,希望对你的学习有所帮助。