Advertisement

2023年电子竞赛中的运动目标控制与自动追踪系统

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目致力于开发应用于电子竞赛中的先进运动目标控制与自动追踪系统,旨在提升比赛的技术含量和观赏性。 本系统以STM32F103C8T6单片机最小系统作为控制核心,并由K210视觉模块、激光笔模块、舵机云台模块及降压模块等组成。红色激光云台通过建立云台坐标与实际视觉坐标的映射关系,能够实现原点复位功能和绕屏幕边框运动,可以识别屏幕上任意位置角度的A4靶纸,并使红光斑沿黑色边框顺时针移动。绿色激光云台可实时追踪红色激光落点,控制绿光点自动跟踪红光斑,其响应时间小于2秒。系统通过按键独立控制每个功能模块,并设有急停按钮以确保安全操作随时停止。此外,本系统具备半自动机械校准模式,有助于提高运动目标的精确度。整体结构简单且稳定性好,易于使用和维护。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2023
    优质
    本项目致力于开发应用于电子竞赛中的先进运动目标控制与自动追踪系统,旨在提升比赛的技术含量和观赏性。 本系统以STM32F103C8T6单片机最小系统作为控制核心,并由K210视觉模块、激光笔模块、舵机云台模块及降压模块等组成。红色激光云台通过建立云台坐标与实际视觉坐标的映射关系,能够实现原点复位功能和绕屏幕边框运动,可以识别屏幕上任意位置角度的A4靶纸,并使红光斑沿黑色边框顺时针移动。绿色激光云台可实时追踪红色激光落点,控制绿光点自动跟踪红光斑,其响应时间小于2秒。系统通过按键独立控制每个功能模块,并设有急停按钮以确保安全操作随时停止。此外,本系统具备半自动机械校准模式,有助于提高运动目标的精确度。整体结构简单且稳定性好,易于使用和维护。
  • 2023设计E题:(本科组)
    优质
    本项目为2023年电子设计竞赛E题——“运动目标控制与自动追踪系统”,旨在通过创新技术实现对移动物体的有效监控和精准定位,挑战参赛者的设计能力和工程实践水平。 2023年全国大学生电子设计竞赛(本科组)E题要求设计并制作一个运动目标控制与自动追踪系统。该系统包括模拟目标移动的红色光斑位置控制系统以及指示自动跟踪效果的绿色光斑位置控制系统。 根据题目描述,两个激光笔固定在独立的二维电控云台上。其中,红色激光笔发射出直径不超过1cm的红点,在距离设备正前方1米远的一块白色屏幕上形成模拟运动目标的效果,并且该系统能够控制这个红点在整个屏幕范围内自由移动。 另一支绿色激光笔用于追踪并指示上述红色光斑的位置变化情况,其工作原理与前者类似。不过值得注意的是,放置这支绿光激光笔的线段应当位于红色激光发射器两侧0.4米至1米之间的位置上,并且可以在这两个指定范围内的任意线上移动。 整个实验所用屏幕为白色背景板,有效显示区域至少达到60厘米乘以60厘米大小。并且需要在该屏幕上标记出中心点的位置用于测试和调试系统的性能表现。
  • 2023E题——红色激光代码(
    优质
    本项目为2023年电子设计竞赛E题参赛作品,专注于开发一套基于红色激光的目标追踪控制系统。系统利用先进的算法实现对移动物体的精准定位和跟踪,并通过编码实现了自动化操作,旨在展示在复杂环境中的目标识别与控制技术。 2023年电赛E题(运动目标控制与自动追踪系统)涉及红色激光追踪代码的开发。该任务要求设计并实现一个能够准确跟踪移动目标的系统,并使用红色激光进行定位和追踪。相关技术细节包括但不限于传感器数据处理、算法优化以及硬件平台的选择与集成,以确保系统的稳定性和精度。
  • -E题
    优质
    本项目致力于开发一款先进的运动目标控制及自动追踪系统,旨在实现对移动物体的精准定位与跟踪。该系统结合了计算机视觉、人工智能算法和传感器技术,能够广泛应用于安全监控、体育分析等领域,为用户提供高效可靠的解决方案。 【运动目标控制与自动追踪系统】是2023年全国大学生电子设计竞赛中的本科组题目,主要涉及嵌入式技术。该系统的重点在于利用红色和绿色激光笔来模拟并追踪移动的目标,并以此评估其控制系统及追踪能力。 **基本要求:** 1. **光斑复位功能**: 红色激光笔发射的光点能够在屏幕上任意位置活动,并且能够返回到预设的原点,精度需确保光点中心与原点之间的误差不超过2cm。 2. **目标控制系统**: 红色光线需要在30秒内沿着屏幕四周边缘顺时针移动一圈,保持其距离边线的距离为2cm以内。 3. **A4靶纸追踪功能**:将一张A4大小的靶纸贴于屏幕上,红色光斑需沿该靶纸边缘行进。如果超出时间限制或偏离指定路径,则会扣分。 4. **旋转目标追踪**: 当靶纸可以任意角度放置时,系统仍需要准确地完成对移动物体的跟踪。 **发挥部分:** 1. **一键启动功能**: 在光斑复位后按下按钮即可自动开始追踪过程。绿色激光笔需在2秒内定位并跟随红色光点,并且两个光斑中心距离应小于3cm。 2. **多位置追踪能力**: 绿色激光笔可以在其放置线段上的任意位置,同时启动目标移动和跟踪系统。如果绿光斑未能在2秒后成功追上红光斑,则认为该次尝试失败并扣分。 **设计要求:** - 两束光线控制系统必须独立运作且不允许直接通信。 - 光点直径需小于1cm,并且屏幕上不能安装任何电子元件。 - 控制系统不得使用台式机或笔记本电脑作为控制平台。 - 系统需要具备暂停功能,当按下暂停键时红绿光斑应立即停止移动以便测量间距。 **评分标准:** - 设计报告: 依据方案、理论分析、电路和程序设计以及测试计划与规范性等方面进行评价。 - 基本要求: 完成度将作为主要的评判依据。 - 发挥部分: 创新性和性能表现是考量的重要方面。 此项目不仅考察参赛者的硬件设计及编程技能,还强调系统集成能力和问题解决技巧。参与者需要使用嵌入式技术开发一个独立且不需要外部支持的目标追踪控制系统,在各种条件下实现精确跟踪功能。
  • 2023设计E题云台程序
    优质
    本项目为2023年电子设计竞赛E题参赛作品,专注于开发一套高效的云台自动追踪系统软件。该程序能够精准捕捉并跟踪目标,具备高度灵活性和稳定性,适用于多种应用场景。 本程序可实现2023年电赛E题的所有要求,使用两个OpenMV4 Plus摄像头。主函数main1负责红色激光校准、扫描外围铅笔框以及巡黑框,并具备随时暂停及重新启动的功能。另一个主要功能由main2函数控制绿色激光跟踪红色目标,同样支持暂停和重启操作。
  • 2023设计E题:激光
    优质
    本项目为2023年电子设计竞赛E题“运动控制激光系统”,旨在通过精确控制机械臂和光学元件,实现对动态目标的高效追踪与加工。参赛者需综合运用自动化、光学及电气工程知识,开发一套具备高精度定位能力和灵活操作模式的创新系统解决方案。 距离1米处有一块白色屏幕:有效面积为60厘米×60厘米,除了不超过1毫米宽度的铅笔痕迹外,不允许存在其他标识。 不得对屏幕以外的部分提出额外要求,例如划线、挂深色布或放置黑板等。背景只能是普通实验室环境。 屏幕上可以自带支架,并且在现场有至少10分钟的时间用于恢复和调试工作,但不允许在此期间烧录代码或者使用手机/电脑进行调试。 红色激光系统中,激光的位置固定不变,而摄像头位置不限制;绿色激光系统的设置则需要将激光与摄像头放在同一个板子上或类似结构物上,并且该装置能够被评委移动(与屏幕平行,在红色激光笔两侧,距离大于0.4米但小于1米),要求二者完全独立运作(不能通过无线/有线方式互相通信)。 尽管基本任务逻辑相对简单,但从硬件角度来说对摄像头分辨率和电机性能有一定的高需求。
  • MATLAB由落体
    优质
    本项目利用MATLAB模拟和分析自由落体运动,并实现对下落物体的目标追踪,适用于物理实验教学与研究。 利用卡尔曼滤波器对自由落体运动的目标进行跟踪。
  • 2023E题开源视觉部分
    优质
    本项目为2023年全国电子设计竞赛(E题)中关于运动目标控制的视觉部分的开源实现。致力于开发和分享先进的视觉追踪技术,助力比赛及科研。 开源2023电赛国赛运动目标控制(E题)视觉部分主要涉及电子设计竞赛中的一个项目,该项目利用视觉技术对运动目标进行实时控制。参赛者需要编写源代码来实现这一功能,并且提供的压缩包“visual_k210_competion_2023e-master”可能包含了完整的开发环境、代码示例和相关资源。 本项目的重点内容如下: 1. 视觉技术:视觉技术是项目的核心,涉及图像处理、计算机视觉和机器学习等多个方面。参赛者可能会使用OpenCV库来捕获、处理和分析视频流,并识别及跟踪运动目标。 2. 图像预处理:在这一阶段,滤波、边缘检测以及色彩空间转换等方法被用来增强图像特征,以便后续的目标检测过程更顺利进行。Canny边缘检测、高斯滤波和霍夫变换可能在此过程中发挥作用。 3. 目标识别与定位:参赛者可能会利用深度学习框架如TensorFlow或PyTorch来构建卷积神经网络(CNN)模型以实现目标的快速准确检测。YOLO、SSD或者MTCNN等轻量级模型可能是选择的对象,这些模型能够高效地在图像中定位和识别目标。 4. K210芯片:项目可能使用了Kendryte K210芯片,这是一个专为AI应用设计的RISC-V双核处理器,并集成了神经网络加速器。该芯片适用于资源有限环境中的实时图像处理任务。 5. CV树莓派:这指的是配备了摄像头和OpenCV库的树莓派设备,作为硬件平台用于实时图像采集与处理工作。由于其低成本及强大的计算能力特点,树莓派常被用作嵌入式视觉系统的开发平台。 6. 源代码管理:在比赛过程中,源代码的有效组织与管理十分重要。参赛者可能使用Git进行版本控制以确保团队协作的高效性和代码的历史记录清晰可查。 7. 硬件接口设计:为了将视觉系统和运动控制系统相结合,参与者需要掌握如何通过GPIO(通用输入输出)、I2C或SPI等通信协议来连接电机驱动器或者伺服马达等硬件设备。这一步骤对于实现对运动目标的精准控制至关重要。 8. 实时性和稳定性优化:在竞赛环境中,保证系统的实时性能和稳定运行是关键挑战之一。为此需要提高代码执行效率、合理分配系统资源,并进行充分测试与调试。 本项目不仅覆盖了计算机视觉、嵌入式系统设计以及硬件接口等多个信息技术领域知识内容,还要求参赛者具备良好的编程基础及对相关算法的深入理解能力。通过参与此类竞赛活动,参与者可以提升自己的综合技能水平并获得解决实际问题的实际操作经验。
  • 2022设计泊车
    优质
    2022年电子设计竞赛自动泊车系统项目致力于开发一套高效、智能的车辆自动泊车解决方案,旨在通过先进的传感器技术和算法优化停车体验,提升驾驶自动化水平。 2022年电子设计竞赛中的自动泊车系统项目专注于开发一种能够自主完成停车任务的智能汽车系统。该系统的研发旨在提高驾驶体验的安全性和便捷性,并通过精确控制车辆的位置与姿态,实现高效、准确地将车辆停放在狭小空间内的目标。 此项目的实施需要综合应用传感器技术、图像处理算法以及自动控制系统等多方面知识,以达到识别停车位边界、检测周围障碍物并规划最优行驶路径的目的。同时,在整个开发过程中还需充分考虑系统的鲁棒性与稳定性,确保其在各种复杂环境下的可靠运行。 通过参与此类竞赛活动,参赛团队不仅能够锻炼自身的技术能力,还能够在实践中探索未来智能交通领域的更多可能性和发展趋势。
  • 2023设计
    优质
    本简介提供关于2023年电子设计竞赛的相关信息和挑战内容概览,旨在激励学生创新思维与实践能力。 【2023 年电子设计竞赛试题-简易频率特性测试】是一场面向电子工程学生的比赛,旨在评估参赛者对电子设计的理解与实践技能,特别是在信号处理及频谱测量技术方面的掌握程度。 **基本要求** 1. **正交扫频信号源**:参赛选手需构建一个能在100kHz至1MHz范围内工作的正交扫频信号发生器。该设备的频率稳定度应低于百万分之一,并能以至少10kHz为单位调节最小频率设置。产生的两个相位差不超过5°且幅度平衡误差不超5%的正弦波,其峰峰值电压需至少达到1V,同时确保在全频段内的幅度平坦度不超过5%,并具备连续扫频输出能力,最小步进宽度应为10kHz,整个扫频过程应在2秒内完成。 2. **频率特性测试仪**:基于前述信号源设计一个输入及输出阻抗均为50Ω的测量装置。该设备的工作范围需扩展至10MHz,并能够执行点频分析任务,确保幅值误差不超过0.5dB、相位差误差不高于5°,同时具备显示分辨率分别为电压增益到小数点后一位和相移精确至小数点后一位的功能。 **发挥部分** 1. **RLC串联谐振电路**:设计一个中心频率为1MHz的RLC串联回路,并确保其工作参数误差控制在5%以内,有载品质因数值设定为4且允许的最大波动同样不超过5%,同时保证最大电压增益不低于-1dB。测试仪需具备测量上述电路中心频率及带宽的能力(3dB点),并提供分辨率为10kHz的读数。 2. **实时显示**:通过扫频方式对RLC回路进行特性分析,并以图形化界面展示其幅值和相位变化曲线,包括电压增益、相移与频率刻度信息。整个线性扫描过程应在30秒内完成。 **其他要求** - **自制信号源**:禁止采用带有处理器的商业化DDS开发板成品。 - **接口设计**:测试仪应提供正交信号输出端口以及被测网络输入和输出连接器。 - **幅度误差定义**:详细说明了平衡度与平坦度的具体计算方法。 - **电压增益及相移规定**:明确规定特性曲线展示中使用的单位及其坐标类型。 **评分标准** - **设计报告**:评审将根据方案论证、理论分析、电路和程序设计方案以及测试计划与结果进行评估,重点关注设计的合理性和实现的整体质量。 - **实物制作评价**:依据成品是否符合基本要求及扩展部分的标准来评判其性能表现。 此次竞赛试题不仅检验参赛者的专业知识水平,还特别强调了动手能力和创新思维的重要性。通过此类活动,参与者能够增强自身的电子工程技能,并为未来的职业生涯奠定坚实的基础。