Advertisement

光伏并网系统中的储能容量,基于经济调度进行研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
针对储能装置与光伏系统协同运行的经济效益考量,并结合光伏发电曲线以及光伏系统购售电价的固有特性,设计并构建了一个经济调度模型。随后,该模型与粒子群算法相结合,对不同容量的光伏发电系统进行了运行成本的计算,从而得出了在加入蓄电池后所产生的整体费用。基于这些综合费用数据,最终确定了蓄电池的最佳容量配置。通过对仿真结果的计算和深入分析表明:恰当容量的蓄电池不仅能够有效平抑光伏发电输出的波动,进而提升整个电力系统的经济运行效率,还具备显著的削峰填谷功能,为电力供应更加稳定可靠提供了有力保障。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文探讨了在经济调度框架内,如何优化配置光伏并网发电系统的储能容量,以提高能源利用效率和经济效益。 为了实现储能装置与光伏系统结合过程中的经济运行,我们根据光伏发电曲线以及光伏系统的购售电价特点进行了分析,并建立了一个经济调度模型。通过这个模型和粒子群算法的运用,计算了不同容量下的光伏发电系统的运行成本,并在此基础上加上蓄电池的成本后得到了综合费用。依据这些数据可以确定最适合的蓄电池容量。 仿真结果表明:适当大小的电池储能系统不仅可以平滑光伏输出,提高电力系统的经济效益,还能发挥削峰填谷的效果。
  • 仿真.rar
    优质
    本研究探讨了光伏(PV)和储能系统在电网中的集成技术,通过构建仿真模型评估其性能、稳定性及经济效益,为实际应用提供理论支持。 该文件是清华大学储能课程的期末大作业。使用SIMULINK搭建了一个完整的光伏-储能并网系统。在我的博客中有详细介绍系统的实现方法,欢迎查看!
  • 发电与仿真.rar
    优质
    本研究探讨了光伏发电结合储能技术接入电网的方法,并通过仿真分析其运行特性及优化策略。 光伏-储能并网系统仿真是一种结合太阳能光伏发电技术和储能技术的电力系统模型,通过模拟实际工作环境来帮助研究人员和工程师分析、优化及设计此类系统的性能。 在名为“光伏-储能并网系统仿真.rar”的压缩包中包含了一个名为a.txt的文本段落件。这个文件可能是仿真的配置文档或说明资料。 光伏并网系统主要包括以下几个关键组成部分: 1. **光伏阵列(PV Array)**:作为系统的中心部分,由多个太阳能电池组成,将太阳光转换为直流电能。其发电量受到光照强度、温度和角度等因素的影响。 2. **最大功率点跟踪(MPPT, Maximum Power Point Tracking)**:为了最大限度地从光伏阵列获取电力,系统采用MPPT算法动态调整负载以确保光伏阵列始终运行在最佳效率状态。 3. **逆变器(Inverter)**:将由光伏阵列产生的直流电转换为交流电,并符合电网的标准电压和频率要求。此外,逆变器还负责并网控制,保证系统与电网同步工作。 4. **储能装置(Battery Storage)**:通常采用锂电池或其它类型的电池来存储多余的电力,在光照不足或者需求增加时释放储存的电力以提供连续稳定的供电。 5. **能量管理系统(EMS, Energy Management System)**:协调光伏、储能和电网之间的能源流动,根据电网状况、天气条件以及用户需求进行智能调度。 6. **并网保护设备**:包括继电器、断路器等装置用于防止系统受到电网异常的影响如电压波动或频率不稳定。 在仿真过程中可能会涉及以下关键技术点: - 负荷预测(Load Forecasting):预估未来的电力需求,以便于提前调整。 - 优化调度策略:根据天气预报和电价变化等因素制定最优的充放电计划。 - 稳定性分析:评估光伏储能系统的频率稳定性和电压稳定性以确保并网后不会对电网产生干扰。 - 故障应对机制:模拟各种故障场景测试系统在异常情况下的自恢复能力。 - 经济性评价:计算投资回报率考虑成本与收益优化系统配置。 a.txt文件可能包括这些组件的参数设置、仿真条件、控制策略或结果输出。具体来说,它可能会描述光伏阵列容量、逆变器类型和规格、储能系统的充放电速率以及EMS算法细节等内容。通过分析这个文档可以深入了解并网系统的工作原理优化设计提高能源利用效率为实际应用提供参考依据。
  • 多种模式电站优化与配置(含Matlab源码及数据)
    优质
    本研究探讨了光储电站中不同调度模式下的经济效益与储能容量配置策略,并提供了Matlab代码和相关数据,以支持模型验证和应用。 本段落探讨了在多种调度模式下光储电站的经济性最优储能容量配置分析,并提供了完整的Matlab源码及数据支持。研究重点在于优化光储电站中的储能容量,以实现经济效益的最大化。具体而言,选择了联络线调整作为调度模式,在目标函数中考虑了包括储能运行损耗费用、售电收益和考核成本在内的多个因素;同时设置了必要的约束条件来确保储能系统的正常运行。通过这种方法能够有效提升光储电站的整体经济性能。
  • 与混合MATLAB
    优质
    本研究聚焦于开发一种结合光伏技术和混合能源存储方案的MATLAB仿真平台,旨在优化可再生能源的有效利用和管理。通过深入分析不同储能技术的特点及性能,探索其在实际应用中的潜在价值,并为未来相关领域的技术创新提供理论依据和技术支持。 包含光伏储能系统:风电与光伏发电结合,并配备蓄电池储能技术,适用于储能策略研究及最大功率点跟踪(MPPT)应用。
  • 仿真发电
    优质
    本研究聚焦于通过仿真技术深入分析和优化光伏并网发电系统的性能与稳定性,旨在提高可再生能源利用效率。 本段落研究了5kW光伏并网发电系统,并采用模糊PID控制法,在MATLAB/simulink环境中进行了仿真分析。
  • 优化
    优质
    本研究聚焦于风光水多能互补系统中的储能技术应用,探索提升其运行效率与经济效益的优化调度策略。 随着全球对可再生能源需求的增加,风能和太阳能作为重要的清洁能源受到了广泛关注。风电与光伏发电是这两种能源的主要应用形式,它们具有零排放、可持续的优点,但同时也存在间歇性和波动性的特点,这对电网的安全稳定运行提出了挑战。 为了更好地理解风电和光伏发电的基本概念:风电是指通过使用风力发电机将风能转化为电能的过程;而光伏发电则是利用太阳能光伏电池直接转换太阳辐射为电能的技术。这两种发电方式都依赖于自然条件如风速和光照强度的变化,因此其输出功率会随这些因素的波动而变化。 由于这种间歇性和波动性问题,在电力系统运行中常出现“弃风”、“弃光”的现象,即为了保证电网稳定需放弃部分可再生能源产生的电能。这不仅降低了可再生能源的有效利用率,也成为限制大规模发展的一个技术瓶颈。 为解决这一挑战,研究者提出了风光水储互补系统的优化调度概念。该体系结合了风力发电、光伏发电、传统水电及抽蓄式储能等多种电源形式,并通过协调各电源的特性来平抑波动性问题。特别是抽水蓄能作为重要的储能方式,在此系统中扮演着关键角色。 优化调度的核心目标是提高可再生能源利用率,减少其对电网稳定性的影响。通过科学合理的调度方案,可以在确保电力供应的同时尽可能利用风能和太阳能,并降低传统能源的使用量,从而实现节能减排的目标。 文中提及了两种可能的策略:负荷预测、发电计划安排及电网运行状态监测等方法来优化调度。这些措施需要结合实际系统的特性以及各种可再生能源的特点进行考虑,并通过算法提供有效的解决方案。 文章还提到应用粒子群优化算法对该模型求解的有效性。这种基于群体智能的技术能够帮助快速搜索最优方案,以实现系统在不同时间尺度下的最佳运行状态。 仿真研究表明该策略不仅提高了可再生能源利用率,也减少了风电和光伏发电并网对电网稳定性的影响。这一成果为电力系统的调度提供了新的思路,并支持了风光水储互补系统的实际应用。 文中还提到“日前调度”,即根据对未来负荷及发电能力的预测提前规划电网运行计划的过程。这种方式有助于更好地应对可再生能源发电不确定性,提高系统整体经济性和可靠性。 综上所述,风光水储互补系统优化调度研究是一项复杂且具有挑战性的课题,涉及电力系统运行与控制、稳定性分析等多个领域专业知识。深入探索该主题将有效推动新型能源系统的融合发展,并为实现绿色低碳转型提供重要支持。
  • Matlab发电仿真
    优质
    本研究利用MATLAB/Simulink平台,对光伏并网发电系统的运行特性进行建模与仿真分析,旨在优化系统设计和提高能效。 本段落对光伏电池的工程用数学模型进行了分析,并在MATLAB/Simulink环境中建立了仿真模型。以国内某公司的一款电池参数为基础,进行了一系列实验并得出了与厂家提供的数据一致的结果。随后,总结了几种常见的最大功率点跟踪控制(MPPT)方法,并搭建了系统各个子模块的模型。仿真结果表明,在外界因素发生变化时,该系统能够快速地追踪到最大功率点。 针对传统算法在实际应用中的不足之处,提出将人工免疫系统的克隆选择算法应用于光伏 MPPT 中。由于免疫系统自身具备有效的机制和特性,使得这种算法可以实时跟踪最大功率点,并具有良好的动态响应性能。这一方法适用于具备一定MATLAB编程基础、工作0-4年的研发人员。 阅读本段落后,读者能够学习到以下内容: 1. 光伏电池建模与仿真技术; 2. 最大功率点追踪控制(MPPT)的技术原理及其在系统中的应用; 3. 基于克隆选择算法的 MPPT 控制如何实现及其实现过程。 文章还介绍了光伏并网发电系统的MATLAB仿真设计和实施方法,强调了理论分析与实践操作相结合的重要性。因此,在学习过程中需要结合实际需求进行方案的设计,并调试相应的代码以加深理解。
  • MATLAB独立电池与超级电器混合管理
    优质
    本研究探讨了在独立光伏发电系统中结合使用电池和超级电容器作为混合储能装置,并利用MATLAB进行能量管理系统的设计与优化,以提高能源效率及稳定性。 为了在高辐照度期间存储多余的电力或在低辐照度期间维持稳定的电力供应以满足负载需求,采用了储能系统(ESS)。传统的储能系统由电池组构成,这些电池能够为负载提供连续的电力储存与供给服务。尽管电池因其高能量密度而成为稳定电源的理想选择,但从它们中提取大量电流会缩短其使用寿命。因此,将电池与超级电容器等能迅速释放大功率的设备结合使用是一种替代方案,在这种混合系统里,电池负责持续的能量供应,而超级电容器则用于提供瞬时所需的电力峰值。这里讨论的是一个独立运作的光伏-超级电容储能组合模型,并提出了一种能量管理策略来调控整个系统的能源供给与存储过程。