Advertisement

MIPS延迟槽详解入门

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文深入浅出地介绍MIPS架构中的延迟槽概念,旨在帮助初学者理解其工作原理及其对指令流水线的影响。适合计算机体系结构爱好者阅读。 这段文字非常适合刚接触MIPS处理器的读者理解延迟槽的概念,有助于更好地读懂MIPS汇编指令。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MIPS
    优质
    本文深入浅出地介绍MIPS架构中的延迟槽概念,旨在帮助初学者理解其工作原理及其对指令流水线的影响。适合计算机体系结构爱好者阅读。 这段文字非常适合刚接触MIPS处理器的读者理解延迟槽的概念,有助于更好地读懂MIPS汇编指令。
  • 简介:时间系统
    优质
    《时间延迟系统入门》是一本全面介绍时间延迟系统基本概念、分析方法与应用领域的书籍。适合初学者和相关专业人员阅读参考。 Introduction to Time-Delay Systems Analysis and Control by Emilia Fridman.
  • DWT驱动(阻塞/非阻塞/定时)
    优质
    DWT延迟驱动技术包括阻塞延迟和非阻塞延迟以及定时功能,用于精确控制程序执行时间,广泛应用于嵌入式系统中以优化性能和响应速度。 使用DWT实现延时功能,包括堵塞延时、非堵塞延时以及计时功能,适用于ARM-CM3/CM4/CM7/CM23/CM33/CM35P/CM55等内核。
  • FPGA以太网输和输出的时序约束
    优质
    本文探讨了在FPGA设计中实现以太网通信时面临的输入与输出延迟问题,并提供了有效的时序约束解决方案。通过优化数据传输过程中的延时控制,确保系统稳定性和高性能表现。 ### FPGA以太网Input Delay与Output Delay时序约束详解 #### 概述 在FPGA设计中,正确地设置时序约束是确保设计能够稳定工作并满足性能要求的关键步骤之一。尤其是在处理高速通信接口,如以太网时,对输入(input)和输出(output)信号的时序进行精确控制尤为重要。本段落档详细介绍了在调试FPGA三速以太网IP核时,如何针对输入输出的时序进行约束,并解释了这些约束的具体含义及其重要性。 #### Input Delay与时序约束的理解 **Input Delay**是指输入信号相对于时钟信号到达FPGA内部寄存器之前的时间延迟。这个延迟可以包括外部信号传输延迟、输入缓冲器延迟等因素。为了确保数据能够在正确的时刻被采样,需要通过时序约束来指定最大和最小的输入延迟时间。 - **Max Input Delay**: 最大输入延迟是指数据信号相对于时钟信号最晚到达FPGA内部寄存器的时间点。如果数据信号到达时间超过了这个最大值,可能会导致数据无法在下一个时钟边沿之前稳定下来,从而影响数据的正确捕获,即违反了建立时间(setup time)的要求。 - **Min Input Delay**: 最小输入延迟是指数据信号相对于时钟信号最早到达FPGA内部寄存器的时间点。如果数据信号到达时间早于这个最小值,可能会导致数据还没有完全稳定就被下一个时钟边沿捕获,从而影响数据的正确性,即违反了保持时间(hold time)的要求。 #### 实际操作示例 以下代码段展示了如何使用Synopsys Design Constraints (SDC)命令对输入信号进行时序约束: ```tcl # 创建时钟eth_rxclk,周期为8ns,上升沿发生在2ns,下降沿发生在6ns create_clock -name {eth_rxclk} -period 8.000 -waveform { 2.000 6.000 } [get_ports {eth_tse_0_pcs_mac_rx_clock_connection_clk}] # 创建虚拟PHY时钟VIRTUAL_PHY_CLK,周期为8ns,上升沿发生在0ns,下降沿发生在4ns create_clock -name {VIRTUAL_PHY_CLK} -period 8.000 -waveform { 0.000 4.000 } # 设置最大输入延迟 set_input_delay -add_delay -max -clock [get_clocks {VIRTUAL_PHY_CLK}] 0.500 [get_ports {eth_tse_0_mac_rgmii_connection_rgmii_in[*]}] # 设置最小输入延迟 set_input_delay -add_delay -min -clock [get_clocks {VIRTUAL_PHY_CLK}] -0.500 [get_ports {eth_tse_0_mac_rgmii_connection_rgmii_in[*]}] # 同上,但约束下降沿 set_input_delay -add_delay -max -clock_fall -clock [get_clocks {VIRTUAL_PHY_CLK}] 0.500 [get_ports {eth_tse_0_mac_rgmii_connection_rgmii_in[*]}] set_input_delay -add_delay -min -clock_fall -clock [get_clocks {VIRTUAL_PHY_CLK}] -0.500 [get_ports {eth_tse_0_mac_rgmii_connection_rgmii_in[*]}] # 设置rx_control信号的输入延迟 set_input_delay -add_delay -max -clock [get_clocks {VIRTUAL_PHY_CLK}] 0.500 [get_ports {eth_tse_0_mac_rgmii_connection_rx_control}] set_input_delay -add_delay -min -clock [get_clocks {VIRTUAL_PHY_CLK}] -0.500 [get_ports {eth_tse_0_mac_rgmii_connection_rx_control}] ``` - `add_delay`选项用于表示是否将指定的延时值加到已有的延时上。如果不使用此选项,则新的延时值会替换掉旧的延时值。 - `-clock`参数用于指定参考时钟。对于输入信号而言,它指的是发送端的时钟。 - 如果需要约束双边缘时钟信号,可以通过`-clock_fall`来指定下降沿约束。 #### Output Delay与时序约束的理解 **Output Delay**是指从数据进入寄存器到离开FPGA输出端口之间的延迟。与Input Delay类似,Output Delay也需要进行约束,以确保输出信号能够在接收端正确地被采样。 - **Max Output Delay**: 最大输出延迟是指数据信号最晚到达输出端口的时间点。如果数据信号到达输出端口的时间过晚,可能会影响接收端的数据采集,违反了接收端的建立时间要求。 - **Min Output Delay**: 最小输出延迟是指数据信号最早到达输出端口的时间点。如果数据信号到达
  • ActiveMQ 与非版本.rar
    优质
    本资源提供了Apache ActiveMQ消息队列系统的两种版本:标准版和低延迟优化版。包含详细的文档和示例代码,帮助用户根据需求选择合适的配置方案。 在Docker环境下安装部署ActiveMQ的延时队列版本与非延时队列版本,请根据个人需求选择合适的版本进行部署。
  • 着色渲染技术的实现
    优质
    本文详细介绍延迟着色渲染技术的原理和实现方法,深入探讨其在现代图形处理中的应用与优势。 延迟着色(Deferred Shading)与 Forward+ 渲染技术的实现如下: 1. **标准前向渲染**:使用纹理缓冲区对象将灯光信息发送到着色器。 2. **Forward(blend)**:以 100 盏灯为间隔分步渲染场景,并混合结果,这是之前的前向渲染方式。 3. **延迟模式(Deferred)**:采用延迟着色进行渲染。这种方法预计会显著提升帧率,尤其在处理大量小灯光时表现更佳。 4. **Forward+**:使用了 AMD 在 2012 年 Eurographics 上公开的 Forward+ 实现方法。 5. **Forward+(CUDA)**:尝试通过 CUDA 进行并行化改进 Forward+ 的光剔除过程,但效果未达预期,可能是由于缺乏有效利用 CUDA 技术的知识。 延迟着色采用 G 缓冲区(包括 Position/Diffuse/Normal/All)和深度信息。
  • IODELAY 输输出模块
    优质
    IODELAY模块是一款高度灵活的输入输出延迟解决方案,适用于高速数据传输与接口时序校准,确保信号同步和通信效率。 在XILINX FPGA开发过程中,可以使用IODELAY模块来控制信号的输入和输出延迟。
  • STM32时函数:HAL库支持微秒和毫秒
    优质
    本文详细解析了基于STM32 HAL库实现微秒级和毫秒级延时函数的方法与技巧,帮助开发者精准控制芯片运行时间。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计领域有着广泛应用。在开发过程中,延时函数是不可或缺的一部分,用于精确控制程序执行时间,例如LED闪烁、定时任务或通信协议等场景中。 本资料主要介绍如何使用STM32 HAL库实现微秒和毫秒级别的延时功能。HAL库即硬件抽象层(Hardware Abstraction Layer),由ST公司提供,旨在简化不同STM32系列之间的编程差异,并提高代码的可移植性。在HAL库中,`HAL_Delay()` 和 `HAL_DelayedEntry()` 函数用于实现毫秒级延时,但这些函数不支持微秒级别的精确控制。 对于微秒级别延时的需求,在STM32 HAL库框架下通常需要自定义解决方案,并且涉及到Systick(系统定时器)或通用定时器的使用。Systick是Cortex-M内核自带的一个定时器,用于实现系统级的延时和时间基准功能。通过配置Systick的Reload值以及当前计数值,并结合中断服务程序的应用,可以达到微秒级别的精确控制。 以下是基本的微秒延时函数实现步骤: 1. 初始化并设置Systick,通常使用系统的主频(如72MHz)作为其时钟源。 2. 计算出每微秒对应的计数器减计数值。这可以通过将`SystemCoreClock`除以100万来计算得出。 3. 在延时函数中根据需要的微秒数目,确定Systick计数器应该减少的次数。 4. 设置Systick的Reload值以便在特定时间后产生中断信号。 5. 开启并启动Systick,在等待过程中进入循环处理直到发生中断事件,并随后清除该中断标志。 对于毫秒级延时,`HAL_Delay()`函数已经提供了方便的支持。它内部实现基于Systick或通用定时器,但用户无需关心具体的底层细节,只需传递所需的延时时间(以毫秒为单位)即可使用。 在实际应用中需要注意的是由于处理器执行指令的时间、中断处理的开销以及可能存在的时钟精度误差等因素的影响,实际延时时长可能会略大于预期值。因此,在设计关键路径中的定时任务时需要适当留出余量来确保准确性。 为了提高代码的可读性和维护性,在项目开发中建议将这些自定义延迟功能封装在一个单独的文件或模块内(例如`delay_us.c`和`delay_us.h`),其中前者包含具体实现,后者提供对外公开接口声明供其他部分调用。使用STM32 HAL库可以方便地完成毫秒级延时控制;而对于微秒级别的精确延时,则需要根据具体的硬件资源与需求来自行设计解决方案。 理解HAL库的底层原理并合理利用其提供的功能能够帮助开发者更高效地实现STM32中的延时操作。
  • C-C计算时间及嵌维度_计算时间与嵌维度_嵌维度
    优质
    本文探讨了C-C计算方法在确定时间序列分析中的延迟时间和嵌入维度的应用,并深入研究了两者之间的关系。通过理论推导和实例验证,提出了一种优化的计算策略,为复杂系统的研究提供了新的视角。 通过CC方法计算时间序列的延迟时间和嵌入维度。