Advertisement

将FPGA ADC数据通过1.4版本传输到MATLAB进行处理

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目旨在利用FPGA采集ADC数据,并采用1.4版通信协议将其高效传输至MATLAB环境中,以便进一步分析与处理。 将fpga_adc示波器的数据从1.4版本传输到MATLAB进行处理,并扩充存储深度至片上RAM的最大容量。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • FPGA ADC1.4MATLAB
    优质
    本项目旨在利用FPGA采集ADC数据,并采用1.4版通信协议将其高效传输至MATLAB环境中,以便进一步分析与处理。 将fpga_adc示波器的数据从1.4版本传输到MATLAB进行处理,并扩充存储深度至片上RAM的最大容量。
  • FPGA ADCMATLAB
    优质
    本项目聚焦于通过FPGA将ADC采集的数据高效传输至MATLAB环境进行进一步分析和处理,旨在探索硬件与软件协同工作的优化方法。 使用FPGA ADC示波器并将数据传至MATLAB进行处理的流程如下:首先将SOF文件烧录到FPGA上,然后按下Key1键启用ADC采集功能。接着通过串口助手接收从ADC采集得到的1024个点的数据,并将其保存为TXT格式文件。最后利用MATLAB对这些数据进行处理并绘制出波形图。
  • STM32L073DMA方式读取ADC串口
    优质
    本项目介绍如何使用STM32L073微控制器通过DMA技术高效地从多个模拟输入端口采集数据,并利用串行通信接口将采集到的数据传输出去。 本程序使用HAL库实现了STM32L073通过DMA方式获取三通道ADC转换数据的功能,并在main函数之外完成了此功能的实现。此外,还采用了串口DMA方式发送数据。
  • STM32F103的16ADCDMA
    优质
    本项目详细介绍如何利用STM32F103微控制器进行16通道模拟信号采集,并使用DMA技术实现高效的数据传输。 使用STM32F103单片机通过ADC1采集16个通道的数据,并利用DMA传输这些数据,最后通过串口打印出来。
  • STM32F103串口2
    优质
    本项目详细介绍如何使用STM32F103系列微控制器通过串口2实现高效的数据发送与接收,适用于嵌入式系统开发和通信应用。 STM32F103通过串口2进行数据的发送与接收操作。每隔300毫秒发送一个字符,并且如果接收到数据,则将该数据原路发回出去。波特率为9600,无校验位和一位停止位。
  • STM32F3利用ADC与DMA
    优质
    本项目介绍了如何使用STM32F3微控制器结合ADC(模数转换器)和DMA(直接内存访问)技术实现高效的数据采集与传输过程,适用于嵌入式系统开发。 在STM32F3系列微控制器上使用ADC模块对连接的外部电位器输入电压进行采样,并通过DMA模式传输转换结果。然后对每8次采样的数据取平均值,以实现滤波处理。
  • ADC采集DAC串口
    优质
    本项目设计了一种通过ADC模块采集模拟信号并转化为数字信号,随后利用DAC模块将数字信号还原为接近原样的模拟信号,并实现数据通过串行通信接口进行高效传输的技术方案。 使用了ADC、DAC、DMA以及串口功能,并且采用了多通道设计,同时利用了两个独立的ADC模块。此外,还应用了通用定时器的PWM模式进行操作。
  • STM32 使用ADC和USART DMA
    优质
    本项目介绍如何使用STM32微控制器结合ADC(模数转换器)与USART DMA技术实现高效的数据采集及传输。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计中有广泛应用。当ADC(模数转换器)与USART(通用同步异步收发传输器)配合DMA(直接内存访问)进行数据处理时,可以实现高效、低延迟的数据传输,尤其适合实时性要求高的应用场景。 首先,STM32的ADC模块将模拟信号转化为数字信号供微控制器使用。该模块支持多通道配置、多种采样率和分辨率,并具备自动扫描功能。在配置过程中,需要设定采样时间、序列以及触发源等参数,并选择合适的电压参考源。 其次,USART是用于设备间数据交换的串行通信接口,在STM32中支持全双工模式即同时发送与接收数据的能力。它提供了多种帧格式、波特率和奇偶校验选项以适应不同的通信协议和应用场景。配置时需要设置波特率、停止位、校验位以及数据位等参数。 当ADC与USART结合使用,特别是在处理大量数据或高速传输需求的情况下,DMA的作用尤为关键。作为一种硬件机制,DMA可以直接在内存和外设之间进行数据传送,并且能够减轻CPU的负担。STM32中的DMA控制器支持多种传输模式包括半双工、全双工及环形缓冲区等。 配置ADC与USART的DMA传输时需要执行以下步骤: 1. 初始化DMA:选择适当的通道,如使用DMA1 Channel 1用于ADC1的数据传输,并设置其方向(从外设到内存)、优先级和循环模式。 2. 配置ADC:开启ADC功能并设定所需的通道、转换顺序及触发源。可以将启动转换的事件配置为由DMA请求触发,例如通过EXTI线或定时器事件。 3. 初始化USART:设置波特率、帧格式以及接收中断,并启用USART的DMA接收特性选择相应的DMA通道。 4. 连接ADC与DMA:使每次完成转换后都会向DMA发出请求,将ADC的转换结束中断连接到DMA请求上。 5. 链接DMA和USART:将目标寄存器设置为USART的数据发送位置以自动传输数据至串行通信接口中进行传送。 6. 启动DMA与USART:开启两者之后,整个过程会自行运作无需CPU介入。 实际应用中还需考虑中断处理机制如ADC转换完成中断以及USART接收完成中断用于错误状态和更新传输状态的管理。此外为避免数据丢失可以设置DMA半缓冲或全缓冲模式及USART流控功能来控制数据流量。 综上所述,通过利用STM32中的ADC、USART与DMA技术组合,在大量模拟信号采集和高速串行通信场景中能提供高效的解决方案并减少CPU处理时间从而提升系统整体性能。掌握这些配置技巧有助于灵活应对各种复杂的数据传输需求。
  • Java的Webservice调用SAP接口.pdf
    优质
    本PDF文档详细介绍了如何利用Java Webservice技术来实现与SAP系统的接口对接,并进行数据交换。适合开发人员参考学习。 关于Java通过webservice方式调用SAP接口传输数据的pdf文档仅供参考。
  • ADC操作,使用ADC经USART1
    优质
    本项目介绍如何配置和使用模数转换器(ADC)进行数据采集,并通过通用同步异步接收 transmitter 1 (USART1) 将采集的数据传输出去。 使用ADC采集并通过USART1输出,在Keil uVision5上运行程序。