
JFET的基本概念与知识
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本文介绍了JFET(结型场效应晶体管)的基本概念和工作原理,包括其结构、操作模式以及在电子电路中的应用。
### 结型场效应管(JFET)的基础知识
#### 结构与符号
结型场效应管(Junction Field-Effect Transistor,简称JFET)是一种重要的半导体器件,在电子技术领域有着广泛的应用。其基本结构是由一个N型半导体区域构成主体部分,在这个N型区域的两侧分别扩散两个P+型半导体区域,形成了两个PN结。这两个P+区是相互连接的,并且共同引出了一个电极——栅极(g)。N型半导体的两端则分别引出了漏极(d)和源极(s),这样就构成了JFET的基本结构。
从结构图上看,JFET的图形符号通常由一个矩形代表N型半导体区,两个箭头指向矩形内部表示两个反偏的PN结。箭头的方向指出了正向偏置的方向,即从P区指向N区。这样的符号设计有助于快速识别器件类型及其工作方式。
#### 导电原理
JFET的工作原理主要基于其内部的耗尽层变化。当栅源电压(V_{GS})为0时,N型半导体区域内的导电沟道处于最宽的状态,此时若加上漏源电压(V_{DS}),沟道中将流过最大的电流。随着V_{GS}从0变为负值,耗尽层会逐渐扩展到沟道中,导致沟道宽度减小。当V_{GS}低于某一特定值(即夹断电压VP)时,耗尽层进一步扩大并最终相交,从而使得沟道完全消失,此时即使存在V_{DS},沟道中也不会有电流通过,这种情况被称为沟道夹断。
对于N沟道JFET而言,为了确保两个PN结反偏,通常要求V_{GS}小于等于0。当同时施加V_{GS}和V_{DS}时,栅源电压的负压会比V_{GS}更大,这会导致两个反偏PN结的空间电荷区上宽下窄,沟道形状呈楔形,进而影响沟道电流。
#### JFET的伏安特性
JFET的伏安特性描述了其漏极电流(I_D)与漏源电压(V_{DS})及栅源电压(V_{GS})之间的关系。对于N沟道JFET来说,其伏安特性曲线与耗尽型MOSFET类似,但是需要注意的是,V_{GS}必须为负值,即JFET正常工作时要求两个PN结反偏。
当V_{GS}=0时,沟道最宽,I_D随V_{DS}的增加而线性增长。随着V_{GS}从0变为更负的值,耗尽层加宽导致沟道变窄,因此I_D随之减小。当V_{GS}降低到VP以下时,沟道完全夹断,I_D几乎为0。
JFET通过改变栅极电压来调节沟道内的耗尽层厚度,从而控制沟道的导电性。这种控制方式使得JFET成为一种体内场效应器件,与之相对的是MOSFET,它通过改变表面耗尽层的厚度来控制电流,被称为表面场效应器件。
总结来说,JFET是一种基于内部耗尽层变化来控制电流流动的半导体器件。它具有独特的结构和工作原理,其伏安特性曲线能够清晰地反映出其工作状态的变化。通过对JFET的研究和应用,可以更好地理解半导体器件的工作机制,为电子技术的发展提供支持。
全部评论 (0)


