Advertisement

CMOS差分跨导运算放大器的建模与设计 (2012年) 进行了研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究致力于开发一种具有高速度、高增益和优异跨导的运算放大器,该运算放大器采用增益自举结构。同时,针对该运放设计,我们构建了详细的数学模型并利用Mat-lab软件进行了仿真验证。为了进一步提升性能,将设计的运算放大器应用于12位、100 MHz采样率的模数转换器(ADC)中,旨在优化辅助运放的设计带宽。仿真分析结果显示:引入辅助运放后,能够显著提升增益至106 dB,相较于未添加辅助运放的情况下增加了55 dB。此外,辅助运放的加入有效地降低了运算放大器的主极点位置,次主极点位置也略有下降;值得注意的是,辅助运放的添加并未对运算放大器在使用过程中所呈现的速度产生任何负面影响。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2012CMOS
    优质
    本文深入探讨了2012年CMOS全差分跨导运算放大器的设计方法和建模技术,旨在优化其性能参数。 本段落研究了一种带增益自举结构的高速、高增益跨导运算放大器,并对其建立了数学模型并进行了Matlab仿真验证。将设计好的运算放大器应用于12位100MSPS模数转换器(ADC)中,可以优化辅助运放的带宽设计。仿真实验结果表明:添加辅助运放后,增益可达到106dB,比之前增加了55dB;主极点显著减小而次主极点略有减少,并且增加辅助运放并不会影响运算放大器的速度性能。
  • CMOS.pdf
    优质
    本论文探讨了全差分CMOS运算放大器的设计方法,深入分析其工作原理及优化技术,旨在提高放大器性能和稳定性。 全差分CMOS运算放大器的设计涉及精密电路的构建与优化,在高性能模拟集成电路领域扮演着重要角色。设计过程中需要考虑诸多因素以确保其在各种应用中的稳定性和准确性,包括但不限于噪声抑制、带宽扩展以及电源效率等方面。此类放大器广泛应用于信号处理和传感器接口等场景中。
  • 高性能低能耗恒CMOS
    优质
    本文设计了一种高性能、低能耗的CMOS运算放大器,该放大器具有稳定的跨导特性,适用于高精度模拟电路和信号处理系统。 采用0.5 μm CMOS工艺设计了一个高增益、低功耗的恒跨导轨到轨CMOS运算放大器。该放大器使用最大电流选择电路作为输入级,并且采用了AB类结构作为输出级。通过Cadence仿真,其输入和输出均可达到轨到轨范围,在3 V电源电压下工作时,静态功耗仅为0.206 mW。当驱动10pF的容性负载时,该放大器具有高达100.4 dB的增益,并且单位增益带宽约为4.2 MHz,相位裕度为63°。
  • 基于低压恒轨对轨CMOS
    优质
    本研究设计了一种基于低压恒跨导技术的轨对轨CMOS运算放大器,旨在提高电路性能和效率。通过优化器件结构与工作模式,实现了宽共模输入范围及低功耗特性,在多种应用中表现出色。 本段落介绍了轨到轨恒定跨导运算放大器输入级电路设计。该电路通过使用虚拟输入差分对动态调整输入差分对的尾电流来实现恒定跨导gm。在共模电压变化时,由于输入对与虚拟输入对不能同时有效工作,导致总跨导gm发生变化。具体来说,在低电源电压条件下,当共模电压改变时,如果输入晶体管处于三极管区域而关闭,则虚拟差分对会先于实际的差分输入级从截止区进入亚阈值状态。为解决这一问题,设计中引入了补偿电流源连接到每个虚拟输入差分对尾部电流晶体管上,以减少跨导gm的变化量。最终所设计运算放大器输入阶段的gm变化误差约为±2%。
  • 实例
    优质
    本文通过具体案例详细介绍了运算放大器中跨导的设计过程与方法,为电子工程领域的读者提供了实用的技术参考。 跨导运算放大器设计实例 在探讨跨导运算放大器的设计过程中,我们可以深入研究其工作原理、关键参数以及实际应用案例。这类放大器因其高输入阻抗和低输出阻抗的特点,在许多高性能模拟电路中发挥着重要作用。 首先,需要明确的是,跨导运算放大器的定义是指一种能够将电压信号转换为电流信号的设备。这种特性使得它非常适合于构建各种反馈控制系统、滤波网络以及其他复杂的电子系统当中使用。 在设计阶段,工程师们通常会关注几个核心参数: - 跨导增益(gm):这是衡量输入电压变化引起输出电流改变程度的重要指标。 - 输入阻抗与输出阻抗匹配:确保信号传输效率最大化同时减少噪声干扰的影响。 - 电源抑制比(PSRR)和共模抑制比(CMRR): 提升放大器对环境条件波动的抵抗能力。 通过合理选择晶体管类型、优化电路布局并采用先进的制造工艺,可以显著提高跨导运算放大器的整体性能。此外,在具体应用时还需考虑温度稳定性等因素以保证长期可靠性。 综上所述,掌握好关于跨导运算放大的理论知识及实践经验对于开发出高质量的电子设备至关重要。
  • 基于0.6μm CMOS工艺
    优质
    本项目专注于采用0.6微米CMOS技术设计高性能全差分运算放大器,致力于优化电路结构与参数设置,以实现低功耗、高增益及快速响应的目标。 本段落设计的两级高增益运算放大器结构包括两部分:第一级采用套筒式运算放大器以实现高增益;第二级使用共源极电路结构来增加输出摆幅。
  • 基于0.6μm CMOS工艺
    优质
    本研究聚焦于采用0.6微米CMOS技术设计高性能全差分运算放大器,旨在优化其带宽、增益及功耗特性,推动模拟集成电路领域的发展。 本段落介绍了一种全差分的套筒式折叠共源共栅运算放大器的设计结构,并使用HSPICE软件对其进行了仿真。仿真结果显示,该运放的开环直流增益为80dB,相位裕度为80°,单位增益带宽为74MHz,具有较高的增益和较低的功耗(小于2mW)。
  • 0.18μm工艺下3.3V恒轨对轨CMOS
    优质
    本项目致力于开发一种基于0.18微米技术、适用于3.3伏电源电压环境下的高性能CMOS运算放大器。该器件采用恒定跨导技术和轨至轨输入输出特性,以实现卓越的电气性能和广泛的应用范围。 采用0.18 μm CMOS工艺设计了一种3.3 V低压轨对轨(Rail-to-Rail)运算放大器。该运算放大器的输入级采用了由三倍电流镜控制的互补差分对结构,实现了满电源幅度的输入输出和恒定的输入跨导;输出级则使用了前馈式AB类输出控制电路,确保了轨对轨的输出摆幅及较强的驱动能力。仿真结果显示:直流开环增益为120 dB,单位增益带宽达到5.98 MHz,相位裕度为66°,功耗仅为0.18 mW,在整个共模范围内输入级跨导变化率为2.45%。
  • 优质
    本项目聚焦于设计高性能的全差分运算放大器,旨在优化其线性度和带宽等关键参数,适用于高精度信号处理及测量系统。 全差分运算放大器设计是《通信系统混合信号VLSI设计》课程设计报告的一部分。
  • 优质
    本项目专注于研究并设计高效的全差分运算放大器,通过优化电路结构和选择最佳元件参数,以提高其性能指标,包括增益、带宽及失真度等。 ### 全差分运算放大器设计 #### 设计背景与目标 本段落档介绍了复旦大学专用集成电路与系统国家重点实验室在全差分运算放大器设计方面的研究成果。主要目的是在上华0.6μm CMOS 2P2M工艺条件下,开发一款高性能的全差分运算放大器,并实现一系列关键性能指标。 #### 设计指标 - **直流增益**:>80dB - **单位增益带宽**:>50MHz - **负载电容**:5pF - **相位裕量**:>60° - **增益裕量**:>12dB - **差分压摆率**:>200V/μs - **共模电平**:2.5V (当VDD=5V) - **共模负反馈单位增益带宽**:>10MHz - **等效输入噪声**:20nV/√Hz - **输入失调电压**:<10mV - **差分输出摆幅**:>±4V #### 运放结构选择 本设计采用共源共栅两级运算放大器结构,具体考虑如下: - 输出摆幅需求:为了满足±4V的差分输出摆幅要求,避免单级运放难以实现这一目标,选择了两级放大器架构。 - 直流增益:简单的两级运放直流增益较小。因此采用了共源共栅输入级来提高直流增益。 - 功耗问题:折叠共源共栅结构的功耗较高,最终选择直接共源共栅输入级和输出级以降低整体功耗。 - 稳定性保障:通过Miller补偿或Cascode补偿技术确保放大器稳定性。 #### 性能指标分析 ##### 差分直流增益Adm>80dB 为了实现这一目标,设计采用了两级结构: 1. **Cascode级**(M1至M8),用于增加直流增益。 2. **共源放大器**(M9至M12),进一步提升增益。 具体计算如下: 第一级的增益公式为: [ A_{1} = -\frac{g_{m3}}{r_{o1}} + \frac{g_{m5}}{r_{o1}} - \frac{g_{m5}}{r_{o3}} + \frac{g_{m7}}{r_{o3}} + \frac{g_{m5}}{r_{o5}} - \frac{g_{m7}}{r_{o5}} ] 第二级增益公式为: [ A_{2} = -\frac{g_{m9}}{r_{o9}} + \frac{g_{m11}}{r_{o9}} - \frac{g_{m11}}{r_{o11}} ] 整个放大器的总增益计算为: [ A_{overall} = A_{1} \cdot A_{2} \geq 10^{80dB/20} = 10^4 ] ##### 差分压摆率≥200V/μs 差分压摆率反映了放大器在大信号输入下的响应速度,计算公式为: [ SR = \frac{I_{DS}}{C_C} ] 其中\( I_{DS} \)是输出电流,\( C_C \)是负载电容。为了提高压摆率,可以通过增加M1的有效电压来实现。 ##### 静态功耗 静态功耗的计算公式为: [ P_{static} = V_{DD} \cdot I_{static} - V_{SS} \cdot I_{DS} ] 假设静态功耗为15mW,则可求得最大静态电流值。此信息有助于后续电路设计中的优化。 通过精心设计放大器结构及参数,本段落档所介绍的全差分运算放大器能够有效满足各项性能指标要求,并展现出良好的稳定性和高性能特性。