Advertisement

光谱绘制与分析_光谱波长_光谱图_MATLAB

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本教程介绍如何使用MATLAB进行光谱数据的绘制和分析,涵盖从基础光谱曲线生成到高级光谱解析技术。 MATLAB光谱图绘制能够画出可见光波长下的光谱图。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ___MATLAB
    优质
    本教程介绍如何使用MATLAB进行光谱数据的绘制和分析,涵盖从基础光谱曲线生成到高级光谱解析技术。 MATLAB光谱图绘制能够画出可见光波长下的光谱图。
  • SPA.rar_SSPPAA__提取_关键识别
    优质
    本资源包提供SSPPAA(光谱分析工具),包含光谱数据处理、波长提取及关键波长识别等功能,适用于科研和教学中对光谱信息的深入分析。 要提取光谱特征波长,请先打开SSPPAA.m文件并更改变量设置。完成后即可使用该文件进行操作。
  • LabVIEW仪_Labview仪_Message Queue.lvlib_labview仪_工具
    优质
    本项目是一款基于LabVIEW开发的光谱仪分析软件,提供高效的光谱数据采集与处理功能,并集成了Message Queue模块以增强系统间的通信能力。 这是一段我自己改编的LABVIEW程序,希望大家多提宝贵意见。
  • Endmember_Extraction_N_FINDR_Matlab_高数据_n_findr_高_MATLAB工具
    优质
    简介:本资源提供基于Matlab实现的N-Findr算法代码用于高光谱数据的端元提取,适用于科研和教学中对高光谱图像进行分析。 N-FINDR算法是一种在无先验知识条件下用于高光谱图像端元提取的算法,并最终计算每种端元的丰度。
  • EEMSCATV3_MATLAB_3D-EEM_三维荧_荧处理_
    优质
    本工具箱为MATLAB环境下的EEM(激发发射矩阵)数据解析提供支持,适用于三维荧光光谱的高效处理与分析。 MATLAB荧光光谱数据三维荧光光谱处理涉及使用该软件对荧光光谱数据进行分析和可视化。这一过程通常包括读取原始数据、应用滤波器去除噪声,以及通过特定算法提取关键的荧光线信息以生成三维图谱。这样的数据分析有助于深入理解样品在不同激发和发射波长下的行为特征,并为科学研究提供有价值的见解。
  • Endmember_Extraction_Codes_zip_MATLAB_解混_matlab解混_matlab_高
    优质
    本资源提供多种MATLAB代码用于执行光谱解混(即端元提取),适用于高光谱图像处理。通过分析复杂混合像素,分离出纯净光谱成分,促进目标识别与分类。 一些常用的高光谱解混方法的MATLAB代码被讨论了。
  • Flash
    优质
    《Flash光谱绘图》是一款专为设计师和艺术家打造的专业级矢量绘图软件,支持多种光谱色彩模式,帮助用户轻松创作出丰富多彩、视觉效果卓越的作品。 Android音频频谱示波器绘制是指在Android平台上开发一个应用,用于显示音频信号的频谱图。这种工具可以帮助开发者或用户直观地分析声音数据的特点,如频率分布等信息。实现这一功能通常需要使用到相关的音频处理库和图形绘制API。
  • matlab类_programe.rar_高_高类_高显示
    优质
    本资源包提供MATLAB程序用于处理高光谱图像数据,包括分类和可视化功能。适用于研究与应用领域中对高光谱数据分析的需求。 使用MATLAB进行高光谱数据显示(显示分类后图像)。
  • iPLS用于特征提取及_iPLS_特征提取_特征_
    优质
    简介:本文介绍了iPLS(间隔偏最小二乘)方法在特征提取和光谱数据分析中的应用,探讨了其如何有效简化复杂光谱数据并提高预测模型的准确性。 iPLS(迭代部分最小二乘法)是一种在光谱分析领域广泛应用的数据处理技术。它结合了主成分分析(PCA)与偏最小二乘法(PLS)的优点,旨在高效地从高维光谱数据中提取特征,并用于分类或回归分析。这些数据通常包含多个波长的测量值,每个波长对应一个光谱点。 在实际应用中,iPLS常面对的是大量冗余信息和噪声的情况。为解决这些问题,iPLS通过迭代过程逐步剔除与目标变量相关性较低的部分,并保留最关键的特征成分。其工作原理包括: 1. 初始化:选取部分变量(波段)进行PLS回归。 2. 迭代:每次迭代都利用上一步得到的残差重新计算因子,从而剔除非关键因素并强化重要信息。 3. 停止条件:当达到预设的迭代次数或者特征提取的效果不再显著提升时停止操作。 4. 结果解释:最终获得的iPLS因子可用作新的输入变量进行后续建模和分析。 在光谱数据处理中,iPLS方法具有以下优点: 1. 处理多重共线性问题的能力强大; 2. 发现隐藏于高维数据中的关键特征,并有助于减少模型过拟合的风险; 3. 动态优化过程逐步剔除不重要的变量,提高模型的解释性和准确性。 在实际应用中,iPLS被广泛应用于诸如遥感图像的地物分类和生物样本化学成分分析等领域。它能够从复杂的光谱数据集中提取有用的特征信息,并为建立机器学习模型(如支持向量机、随机森林等)提供有效的输入变量。总结来说,iPLS是一种强大的工具,在高维光谱数据分析中发挥着重要作用,通过减少复杂性提高预测能力和解释能力。
  • 近红外中的预处理和选择方法的进展及其应用__预处理_算法
    优质
    本文综述了近红外分析中光谱预处理及波长选择方法的发展趋势与最新成果,重点探讨了这些技术在提高光谱数据分析准确性、效率中的关键作用。 光谱分析的核心介绍包括其算法内容及功能简介。这种技术非常实用且有效,在数据分析领域占有重要地位。它通过解析不同物质的光线吸收、反射或发射特性来识别材料成分,广泛应用于化学、物理学以及环境科学等多个学科中。 在算法方面,光谱分析通常涉及复杂的数学模型和计算方法,以从收集到的数据中提取有用信息。这些算法能够处理海量数据,并从中找出关键特征用于进一步研究与应用开发。此外,随着机器学习等先进技术的发展,现代的光谱数据分析工具变得更加智能化、自动化,在提高效率的同时也增强了准确度。 总之,光谱分析不仅具有强大的科学价值和技术意义,还为众多领域的实际问题解决提供了有力支持。