Advertisement

Gauss迭代法与SOR迭代法的Matlab实现.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供高斯迭代法和超松驰(SOR)迭代法在MATLAB环境下的编程实现,适用于数值分析中线性方程组求解的教学与实践。 这段文字描述了使用详细的Matlab代码注解来解决矩阵方程的数值方法,包括Gauss迭代法和SOR(Successive Over-Relaxation)迭代法,并且通过几个例子展示了这些方法的具体实现过程。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GaussSORMatlab.zip
    优质
    本资源提供高斯迭代法和超松驰(SOR)迭代法在MATLAB环境下的编程实现,适用于数值分析中线性方程组求解的教学与实践。 这段文字描述了使用详细的Matlab代码注解来解决矩阵方程的数值方法,包括Gauss迭代法和SOR(Successive Over-Relaxation)迭代法,并且通过几个例子展示了这些方法的具体实现过程。
  • JacobiGauss-SiedelSOR
    优质
    本文章介绍了三种常见的线性方程组求解方法:Jacobi迭代法、Gauss-Seidel迭代法和Successive Over-Relaxation (SOR) 迭代法,分析了它们的特点及适用场景。 Jacobi迭代法、Gauss-Saidel迭代法以及SOR(Successive Over-Relaxation)迭代法可以通过Matlab编程来求解方程组Ax=b。这些方法在数值分析中用于解决线性代数问题,尤其适用于大规模稀疏矩阵的计算。
  • JacobiGauss-Seidel.docx
    优质
    本文档探讨了数值分析中的两种基本迭代方法——Jacobi迭代法和Gauss-Seidel迭代法,比较了它们在求解线性方程组时的效率与收敛特性。 本段落介绍了雅可比迭代收敛法和高斯-塞德尔迭代法的基本原理及方法,并使用Matlab编程实现了这两种算法。实验内容包括问题分析、程序编写以及实例设计。其中,一个具体实例是运用Jacobi迭代法求解线性方程组。最终目标是通过实验加深对这两种方法的理解与掌握。
  • Jacobi_Jacobi_Jacobi_SOR及Gauss-Seidel比较__
    优质
    本篇文档深入探讨了Jacobi迭代算法及其在求解线性方程组中的应用,同时对比分析了SOR与Gauss-Seidel迭代法的异同,为迭代法选择提供理论依据。 使用MATLAB语言实现Jacobi迭代法、Gauss-Seidel迭代法以及SOR(Successive Over-Relaxation)迭代法的计算过程。
  • MATLABSOR
    优质
    本段代码实现了MATLAB环境下的SOR(Successive Over-Relaxation)迭代算法,用于求解大型稀疏线性方程组,适用于数值计算与科学仿真。 这段文字主要描述了在MATLAB中的SOR迭代算法的m文件。
  • MATLABSOR程序
    优质
    本程序展示了如何在MATLAB中实现和应用SOR(Successive Over-Relaxation)迭代算法来求解线性方程组。通过调节松弛因子ω,优化矩阵求解过程,适用于数值分析与工程计算。 SOR迭代法的Matlab程序可以用于求解线性方程组问题,在编写此类代码时需要注意选择合适的松弛因子以加速收敛过程,并确保矩阵条件数适中以便于算法稳定运行。此外,对于初学者而言,理解基本的Jacobi和Gauss-Seidel方法有助于更好地掌握SOR迭代法的核心思想及其改进之处。
  • 使用MATLABJacobiGauss-Seidel、逐次超松弛和共轭梯度
    优质
    本项目采用MATLAB编程实现了求解线性方程组的四种经典迭代方法,包括Jacobi迭代法、Gauss-Seidel迭代法、逐次超松弛(SOR)迭代法以及共轭梯度法。 求解线性方程组 Ax=b,其中 A 是一个 nxn 的已知矩阵,b 是 n 维的已知向量,x 则是待求的 n 维未知向量。请使用以下四种方法进行计算:(1)Jacobi 迭代法;(2)Gauss-Seidel 迭代法;(3)逐次超松弛迭代法(SOR);以及 (4) 共轭梯度法。矩阵 A 是对称正定的,其特征值符合在 [0, 1] 区间内的均匀分布,向量 b 的元素遵循独立同分布的标准正态分布。分别设定 n 等于 10、50、100 和 200,绘制出上述四种方法各自的收敛曲线图,横轴表示迭代次数,纵轴表示相对误差。 此外,请比较 Jacobi 迭代法、Gauss-Seidel 迭代法、逐次超松弛迭代法和共轭梯度法与高斯消去法及主元消去法的计算时间。调整逐次超松弛迭代法中的松弛因子值,分析其对收敛速度的影响。
  • C++中Jacobi和SOR
    优质
    本文介绍了在C++编程语言中如何实现求解线性方程组的两种常用迭代法——雅可比(Jacobi)迭代法与超松弛(SOR)迭代法,包括算法原理及其实现细节。 本资源是一份实验报告,内容涉及用C++实现Jacobi和SOR迭代方法,并包括相关原理及代码。代码中附有详细注释。
  • Gauss-Seidel 3.c
    优质
    本视频讲解了Gauss-Seidel迭代法的原理及其在求解线性方程组中的应用,通过实例演示其计算过程。 Gauss-Seidel迭代法是一种用于求解线性方程组的数值方法。这种方法通过逐次逼近的方式更新变量值,每次使用最新的计算结果进行后续的迭代过程,从而逐步接近精确解。相较于Jacobi迭代法,它利用了每一时刻最新获得的信息来改进下一个未知数的估计值,在很多情况下能够更快地收敛到问题的解。
  • Gauss-Seidel 求解
    优质
    简介:Gauss-Seidel迭代法是一种用于求解大型线性方程组的迭代算法,通过逐次逼近的方式逐步精确解的估计值。这种方法利用前一次迭代的结果进行更新,直至达到满意的精度。 经过10次Gauss-Seidel迭代后,相邻两次迭代解之间的无穷范数误差小于:1.0e-8。此时的Gauss-Seidel迭代解为:x = 1.099999996545653, 1.199999997883050, 1.299999998885741。