Advertisement

飞控电路设计提供的电路方案文档。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
飞控电路的相关技术资料,现已免费提供分享。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 资料
    优质
    本资料详尽介绍了飞行器控制电路的设计方案,包括硬件选型、电路布局与调试技巧等内容,适合电子工程及航空爱好者参考学习。 飞控电路资料免费分享给大家。
  • 基于STM32F407(含PCB和源码)-
    优质
    本项目详细介绍了一种基于STM32F407微控制器的无人机飞控遥控器硬件及软件设计方案,包括详细的PCB布局与源代码。 飞控DIY遥控器包含液晶屏,姿态采样通过cc2530传输数据,各个部分的代码都有。
  • 微型四轴行器及PCB源件(AD10)- 解决
    优质
    本资源提供一款基于Altium Designer 10软件开发的微型四轴飞行器飞控板完整电路设计,包括详细的原理图和PCB布局文件,为无人机爱好者与工程师提供便捷的设计解决方案。 主控芯片使用的是STM32F103,传感器是MPU6050,并且配备了NRF24L01无线通讯模块,引出了无线接口。计划在某宝上购买现成的模块。 关于如何在PCB中添加图片,请参考以下步骤:首先下载你喜欢的图片,然后使用Windows自带的画图软件进行编辑,将文件另存为单色位图格式(注意必须是单色位图)。 此外,在电路城分享了一个资料包。这个资源是由卖家免费提供的,并不包含技术支持服务。在使用前,请自行验证资料的正确性。如果发现有版权问题,请联系管理员处理!
  • LED制器板
    优质
    本设计提供了一套详尽的LED控制器板电路方案与图纸,涵盖硬件选型、原理分析和实际应用指导,适用于照明系统控制。 我对观看YouTube视频感到厌倦了,在那些视频里人们使用Wemos D1 Mini搭配外部电平转换器板来驱动LED灯条。我认为这种组合对于这样的需求来说有些过度复杂,但我想要一个更加紧凑的解决方案——在一块板上集成电平转换器,并能提供适合驱动LED所需的+5V电压。 这个小项目非常适合刚开始接触LED灯带的人作为焊接PCB的第一个项目。虽然它不适用于大规模的家庭安装(比如整个房屋),但对于那些希望在家里各个角落布置30个左右的小光源以突出不同区域的人来说,这绝对是一个理想的选择。 您只需将2针Molex接口连接到+5V电源,并通过4针Molex接口为LED灯带供电。通常情况下,使用Dupont线缆就能轻松地把+5V、D4的+5V以及GND与您的LED灯条正确接好。 有关详细的物料清单(BOM),请参考GitHub上的相关文档。
  • 辐射测量仪及原理图-
    优质
    本设计文档详细介绍了辐射测量仪的电路设计方案及其工作原理,包括关键组件选择、电路布局和功能说明等,提供完整原理图以供参考。 辐射测量仪电路概述: 1. 功能:测试电脑、电视以及各种办公自动化设备的电磁波辐射,并具备自动关机功能,延时关机时间为3分钟。 2. 测试范围及精度:在5HZ至5000MHZ频率范围内工作。灵敏度为≤1uw/平方cm,精度为≤±1db。 参照标准:HJ/T 10.2-1996(辐射环境管理导则电磁辐射监测仪器和方法)。
  • 甩脂机(含PCB和Sch源件)-
    优质
    本项目提供一种高效的甩脂机控制电路设计,包含详细的PCB与Sch源文件。适用于健身器材爱好者及电子工程专业人员进行研究与开发。 基于S320F28027FP设计的甩脂机控制器能够支持AC220V、300W的设备,并且包含PCB和Sch文件。
  • Crazepony四轴行器PCB
    优质
    Crazepony四轴飞行器PCB电路设计方案详细介绍了一种四轴飞行器的印刷电路板(PCB)设计方法,包括各组件布局、电气连接及优化技巧。 Crazepony项目旨在为大学生航模爱好者及创客提供一个可二次开发的迷你四轴飞行器原型。我们秉承开放、合作、分享的理念,致力于将Crazepony打造成为一个软硬件平台,供航模爱好者学习和交流使用。该项目完全开源,包括源代码、原理图、设计思路等,并提供了详尽的知识库资源。用户可以通过此项目了解四轴飞行器的相关知识并进行二次开发,实现自己的创意。
  • 直流与原理图-
    优质
    本项目专注于直流电机控制电路的设计及其实现原理分析,提供详尽的电路设计方案和原理图,旨在为电子工程爱好者和技术人员提供实用参考。 标题中的“直流电机控制电路原理图-电路方案”表明我们将要讨论的是关于直流无刷电机的控制系统及其相关的电路设计细节。该设计方案在2014年的空气净化器产品中得到了实际应用,并且已经大量生产,证明了其稳定性和可靠性。 直流电机控制电路主要用于调节电机的速度和方向,这通常通过改变输入电压或电流来实现。对于没有机械换向器的无刷直流电机而言,则需要电子换相系统(即BLDC控制器)以确保持续旋转并避免磨损问题。 1. **无刷直流电机的工作原理**:该类型电机由定子绕组和转子磁钢组成,通过霍尔效应传感器或编码器来检测其位置,并据此确定转子相对于定子磁场的位置。这使得电子换相得以适时进行,从而保持电机的持续旋转。 2. **电机控制电路的核心组件**:控制器通常包括功率开关器件(如IGBT或MOSFET)、微控制器、霍尔传感器、电源管理模块及保护电路等部分。其中,微控制器接收指令并计算相应的换相时序,驱动功率开关改变电流路径以实现电子换相。 3. **C语言程序的作用**:在电机控制系统中,使用C语言编写的应用程序运行于微控制器上,执行实时控制算法(如PWM),从而精确调节电机速度。通过调整开关器件的导通时间来改变平均电压,进而调控转速。 4. **电路设计的关键要素**:包括电源方案、滤波器、保护机制(过流/短路等)、驱动模块及信号处理单元。例如,滤波器确保运行时电流和电压稳定;而保护措施则在异常情况下防止电机和控制器受损。 5. **文件名称解析**:“Fte2ky2eM9ww8TlXjPINm4vcffIF.png”可能是一张展示电路原理图的图片,“HKL758A_A20140720.SchDoc”则可能是某个电路设计软件(如Altium Designer或EAGLE)中的源文件,其中包含了详细的元器件、连接方式和参数等信息。 综上所述,该方案涵盖了驱动无刷直流电机所需的完整控制策略——从硬件到软件的各个方面。对于电子工程师来说,理解和掌握这种控制系统的设计方法是开发高效且可靠的电机解决方案的关键所在。