Advertisement

船用航迹控制系统研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《船用航迹控制系统研究》一文深入探讨了船舶自动导航技术的发展与应用,重点分析了航迹控制系统的原理、设计及优化策略,旨在提升海上航行的安全性和效率。 在MATLAB中模拟了船舶运动,并控制了其航行方向。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《船用航迹控制系统研究》一文深入探讨了船舶自动导航技术的发展与应用,重点分析了航迹控制系统的原理、设计及优化策略,旨在提升海上航行的安全性和效率。 在MATLAB中模拟了船舶运动,并控制了其航行方向。
  • trackkeeping.rar_欠驱动舶__基于MATLAB的跟踪
    优质
    本资源为一款针对欠驱动船舶设计的航迹控制系统,采用MATLAB进行开发与仿真。系统旨在实现复杂海况下的精确路径追踪,适用于学术研究和工程应用。 船舶航迹控制属于典型的欠驱动控制问题,在这一领域内,“轨迹跟踪”是一个关键的研究方向。
  • 舶回转试验与PID的仿真
    优质
    本研究探讨了船舶在进行回转运动时的表现,并通过模拟实验评估了一种基于PID算法的航向控制系统的效果。 该实验报告结合船舶参数,在Simulink环境中建立Nomoto数学模型,并对其进行回转试验。随后设计一个PID控制器以使船舶保持正东航向,最后加入干扰测试其性能。
  • 的轨跟踪-MATLAB程序
    优质
    本项目通过MATLAB编写算法,实现对船舶航行路径的有效规划与精确跟踪。代码模拟了多种海况下航迹调整策略,为海上导航提供技术支持。 本段落使用MATLAB-Simulink进行仿真,并采用了两种简单的控制算法。仿真过程中加入了不确定干扰因素,研究的是典型的欠驱动控制系统问题。
  • :应于无人的轨跟踪
    优质
    本研究聚焦于开发适用于无人船的高效能轨迹跟踪控制技术,旨在实现船舶自主航行时的高精度路径跟随和动态调整能力。 TrajectoryControl用于无人船的轨迹跟踪控制,在基于Matlab的验证数学模型中使用了两轮差速的小车模型。在Trajectory and Control.m文件中的代码主要通过PID环节对航向角进行控制,使小车朝目标前进。而在trajectory(两个闭环).m文件中,则是利用PID环节同时对航向角和距离进行控制,以引导小车到达目的地(效果很好)。我会设定小车的起点坐标为x=2, y=1, theta=pi/6以及终点限制在x=10, y=10;同样地,也可以设置起点为x=2, y=1, theta=pi/2,并将终点设于相同的x和y值。这样可以得到两个不同的轨迹图(仅通过修改航向角theta)。
  • fuzzy_of_ctr_str_line.zip_向模糊修正
    优质
    本项目提供了一种基于模糊逻辑的船舶航向控制系统及航迹修正方法,通过模拟人类驾驶员的操作经验来优化船舶航行路径和稳定性。 在IT行业特别是船舶自动化与智能导航领域,模糊控制(Fuzzy Control)是一项广泛应用的技术。标题fuzzy_of_ctr_str_line.zip_航向模糊_船舶_船舶 模糊_船舶航向控制_船舶航迹揭示了该压缩包文件的核心内容:关于船舶直线航迹保持的详细资料和模型。 描述中提到建立了一个用于实现精确航行的船舶直线航迹模型,并通过模糊控制系统来调整船体方向,以确保航行精度与安全性。实际操作过程中,影响船只航线的因素众多(如风、浪及水流),而模糊控制能够有效应对这些不确定性因素,提供更加灵活且适应性强的解决方案。 在模糊控制理论中,系统通常由一系列基于人类专家经验制定的规则来描述。例如,在船舶偏离预定航向时,模糊控制器会根据偏差及其变化率生成相应的调整指令(如改变推进器或舵机的动作),以帮助船只回归正确的航行路径。这种方法的优点在于其非线性和自适应性特点,使其能够在复杂环境中有效运作。 压缩包内的文件fuzzy_of_ctr_str_line.mdl很可能是一个模型文件,可能使用MATLAB的Simulink或其他类似仿真工具创建,用于模拟和分析船舶航向模糊控制系统的行为。该模型中包含了输入变量(如航向偏差及其变化率)、模糊逻辑系统及输出变量(如舵角或推进器命令)。通过这些仿真实验可以评估系统的性能,并优化控制规则以确保在各种条件下都能实现精确的航向控制。 总而言之,此压缩包文件为科研人员和工程师提供了一种应用模糊技术来保持船舶直线航行的有效途径。它不仅有助于提高自动导航的研究水平和安全性,也为未来船舶导航系统的设计提供了新思路与解决方案。通过对该模型深入理解及仿真分析,我们可以更好地掌握模糊控制在解决实际问题中的作用,并为其进一步发展奠定基础。
  • FMRLC_Tanker.zip_MATLAB_舶_舶MATLAB__向_
    优质
    本资源包提供了一个基于MATLAB的船舶控制系统模型,专注于优化船舶在航行过程中的航向控制。通过模拟各种海上条件下的操作,它为研究人员和工程师提供了评估和改进船舶稳定性和操纵性的平台。 船舶航向控制的一个实用程序可以进行仿真运行。
  • 关于广义预测仿真中的应
    优质
    本文探讨了广义预测控制技术在船舶航向控制系统中的应用,并通过仿真实验验证其有效性和优越性。 为了应对船舶航向控制中存在的问题,如传统方法响应慢、鲁棒性差以及舵角变化频繁且抗风浪流干扰能力弱的问题,我们采用了一种基于广义预测控制的船舶航向保持与转向算法,并实现了控制器参数根据智能规则自动调整。通过在MATLAB和SIMULINK中进行仿真测试,并将结果与传统的PID控制方法进行了比较,在船舶速度发生变化导致模型改变的情况下,验证了广义预测控制系统具有更好的鲁棒性;而在加入风浪流干扰时,进一步证明该算法相比PID控制拥有更强的抗干扰能力。
  • 基于Norrbin和Nomoto舶模型的PID及ADRC策略在中的应
    优质
    本文探讨了将Norrbin和Nomoto船舶模型与PID及主动 disturbance rejection control (ADRC) 控制策略相结合,应用于改善船舶航向控制系统的性能。通过理论分析和仿真试验验证了所提方案的有效性。 Norrbin模型与Nomoto模型是船舶航向控制领域广泛使用的动态数学模型。其中,Norrbin模型主要描述了在舵角作用下船舶的横荡、偏航及转向运动特性;而Nomoto模型则侧重于研究船舶回转特性的变化规律。这两种理论对于深入理解和掌握船舶的动力响应与稳定性至关重要。 PID(比例-积分-微分)控制和ADRC(自抗扰)控制是两种不同的控制系统方法,前者通过调整P、I及D三个参数实现对目标的精确追踪;后者则是一种较新的技术,通过对不确定性和外部干扰进行在线估计补偿来优化系统性能。在基于Norrbin与Nomoto模型的应用场景下,运用PID和ADRC策略可以有效改善船舶航向控制的效果。 将这两种先进的控制理论应用于上述两个数学框架中,意味着能够通过精确的动态描述结合尖端技术手段提高船舶操作的安全性和效率性,并减少人为错误发生的概率。这不仅有助于增强复杂海况下的航行保障能力,还促进了现代船用自动化系统的进步与发展。 本段落档强调了“航向控制系统”在当前船舶自动控制领域的关键作用。其性能优劣直接影响到船只的航行稳定、燃油消耗及乘客体验等方面,因此对于该技术的研究与改进显得尤为重要和紧迫。 此外,“船舶航向控制技术分析文章”的部分可能涵盖了对现有技术水平的详细探讨,并且随着现代造船工业的发展趋势提出了新的挑战性要求以及环境友好型操作需求。这表明了在追求更高自动化水平的同时也要考虑如何减少碳足迹,以实现可持续发展目标。 总之,在Norrbin与Nomoto船舶模型框架下采用PID和ADRC控制策略对于提升航行性能、保障海上安全及推动智能化船用控制系统设计具有重要的理论价值和技术意义,同时也是未来研究的重要方向。
  • 向非线性中的H∞鲁棒及仿真(2010年)
    优质
    本论文针对船舶航向控制系统,探讨了H∞鲁棒控制策略,并通过仿真实验验证其有效性和稳定性,以提高复杂海况下的航行性能。 针对船舶航向非线性控制系统的数学模型,在考虑船舶操舵伺服机构特性的情况下,基于状态反馈线性化方法,采用闭环增益成形算法设计出了船舶航向鲁棒控制器。利用Matlab/Simulink工具箱进行仿真后发现,所设计的鲁棒控制器相较于使用极点配置法设计出的鲁棒镇定控制器,在控制性能方面表现更佳,并且对风浪干扰具有更强的鲁棒性。