Advertisement

基于深度学习的NOMA-OFDM系统信道估计方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究提出了一种基于深度学习的非正交多址接入正交频分复用(NOMA-OFDM)系统的信道估计新方法,有效提升了通信系统的性能和效率。 使用深度学习技术对 NOMA-OFDM 系统进行信道估计是 NOMA-OFDM-DL 系列研究的一部分。该系列专注于利用先进的机器学习方法来改善非正交多址接入(NOMA)与正交频分复用(OFDM)结合系统的性能,特别是在复杂无线通信环境下的信道状态信息获取方面。通过深度学习模型的应用,可以更有效地估计和预测信道特性,从而提升数据传输的效率和可靠性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • NOMA-OFDM
    优质
    本研究提出了一种基于深度学习的非正交多址接入正交频分复用(NOMA-OFDM)系统的信道估计新方法,有效提升了通信系统的性能和效率。 使用深度学习技术对 NOMA-OFDM 系统进行信道估计是 NOMA-OFDM-DL 系列研究的一部分。该系列专注于利用先进的机器学习方法来改善非正交多址接入(NOMA)与正交频分复用(OFDM)结合系统的性能,特别是在复杂无线通信环境下的信道状态信息获取方面。通过深度学习模型的应用,可以更有效地估计和预测信道特性,从而提升数据传输的效率和可靠性。
  • OFDM
    优质
    本研究提出了一种基于深度学习技术的新方法,用于正交频分复用(OFDM)通信系统中的信道估计。该方法利用神经网络模型有效提升信道状态信息的准确性与效率,在复杂多变无线环境中表现出显著优势。 基于深度学习的信道估计在OFDM系统中的应用主要采用CNN架构进行课程项目中的信道状态估计。这种方法利用了卷积神经网络的强大能力来处理复杂的通信信号,并且能够有效地提高信道估计的准确性和效率。通过训练大规模的数据集,该模型可以自动提取出影响信道特性的关键特征,进而实现对OFDM系统中动态变化的无线信道进行精准预测和评估。
  • OFDM联合与检测
    优质
    本研究提出了一种基于深度学习技术的新型算法,用于正交频分复用(OFDM)通信系统中实现高效的联合信道估计和信号检测,显著提升了系统的性能和可靠性。 代码已在 Ubuntu 16.04 + TensorFlow 1.1 + Python 2.7 环境下测试通过。 所需依赖项: - TensorFlow 操作步骤: 1. 切换到 .DNN_Detection 目录。 2. 运行 `python Example.py`。
  • Beamspace毫米波
    优质
    本研究提出了一种创新性的基于深度学习的Beamspace毫米波信道估计方法,旨在提高复杂环境下的通信性能和效率。通过转换到beamspace域,该方法能够有效降低计算复杂度,并利用深度神经网络准确预测大规模天线阵列中的信道状态信息。 这篇论文《基于深度学习的Beamspace毫米波大规模MIMO系统信道估计》提供了Python版本的源代码。适合人工智能和通信领域的研究人员使用。
  • 导频OFDM研究-OFDM
    优质
    本文探讨了基于导频的正交频分复用(OFDM)系统中的信道估计技术,旨在提高通信系统的性能与可靠性。通过优化导频位置和设计新颖的算法,增强了在多径衰落环境下的数据传输效率。研究结果为无线通信领域提供了理论依据和技术支持。 基于导频的OFDM信道估计方法的基本过程包括:在发送端适当位置插入导频信号;接收端利用这些已知的导频信号来恢复出特定时刻的信道信息;再通过内插、滤波或变换等手段,从获取到的部分信道信息中推算出整个时间段内的完整信道状态。 具体而言: 1. 发送端选择并插入导频:在发送数据之前,在OFDM符号中的某些位置嵌入已知的参考信号(即导频)。 2. 接收端提取导频处的信息:接收器通过检测这些预设的位置,准确地测量出信道响应特性。 3. 利用插值或其他技术恢复完整信息:利用从各个导频点得到的数据作为基础,采用适当的算法来估计整个OFDM符号期间的信道变化情况。 这种方法能够有效提高通信系统的性能和可靠性。
  • DL_DD_MIMO-master__MIMO___
    优质
    本项目为DL_DD_MIMO-master,致力于通过深度学习技术进行MIMO(多输入多输出)系统中的信道估计研究。采用先进的机器学习算法来优化无线通信中信号的传输效率和质量,特别是在复杂环境下提高数据传输速率与稳定性方面具有显著效果。 基于深度学习的信道估计在MIMO系统中的应用能够有效运行。
  • 算.zip
    优质
    本项目探索了利用深度学习技术进行无线通信中的信道状态信息预测与估计。通过训练神经网络模型,实现对复杂多变无线环境下的信道特性的准确预判,旨在提升数据传输效率及稳定性。 在现代通信系统中,信道估计是一个至关重要的环节,它关乎信号传输的准确性和效率。本段落将深入探讨基于深度学习的信道估计方法,并结合提供的资源为读者提供一个全面的理解框架。 首先,我们要了解信道估计的基本概念。无线通信中的信号会受到多径传播、衰落和干扰等因素的影响,导致信号质量下降。信道估计则是通过接收端的数据来推断出信道的状态,以便进行有效的信号恢复和均衡。 传统上,信道估计通常采用数学模型和线性估计算法,如最小均方误差(LMMSE)或最小二乘(LS)。然而,在复杂信道环境中这些方法的表现可能不尽人意,尤其是在高速和大规模MIMO系统中。 近年来,随着深度学习技术的发展,人们开始探索将其应用于信道估计。深度学习以其强大的非线性建模能力能够更好地适应复杂的信道特性。在这个项目中,基于深度学习的信道估计可能是通过构建神经网络模型来实现的,训练其从接收到的带有噪声的信号中预测和推断出信道状态。 这个项目的说明书可能详细介绍了如何构建这样的深度学习模型,并包括以下步骤: 1. 数据准备:收集不同信道条件下的训练样本,如Rayleigh、Rician等信道模型。 2. 模型架构:设计卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆(LSTM)或者更先进的Transformer模型,用于捕获信号的时间和频率相关性。 3. 训练过程:定义损失函数,如均方误差(MSE)或交叉熵,并使用反向传播算法进行参数更新。 4. 评估与验证:在独立的测试数据集上检查模型性能,衡量指标可能包括均方根误差(RMSE)或符号误码率(SER)。 5. 环境搭建教程:指导用户安装必要的深度学习库如TensorFlow或PyTorch和其他依赖项,并设置合适的硬件环境支持GPU。 此外,项目还可能涵盖了如何将训练好的模型集成到通信系统的实际流程中,以及在实际运行时进行在线学习和自适应优化的方法。 这个项目为研究和应用深度学习在信道估计中的潜力提供了一个实践平台。通过理解和运用这些知识,通信工程师和研究人员可以进一步提升无线通信的性能,在5G及未来6G网络中,深度学习有望成为解决复杂信道问题的关键工具。
  • 双用户NOMA号检测研究
    优质
    本研究探讨了在双用户非正交多址(NOMA)通信系统中,利用深度学习技术提升信号检测性能的方法。通过设计创新的学习架构和算法优化,旨在有效解决传统NOMA系统的局限性问题,为未来的移动通信提供一种高效、可靠的解决方案。 这些文件用于在双用户非正交多址 (NOMA) 系统中实现信号检测的深度学习方法。主要包括三个主要脚本:生成训练数据、训练神经网络以及生成测试结果。该神经网络针对具有相位衰落的静态标量信道进行了训练,并且能够同时为两个用户在一个子载波上检测传输符号。 研究考虑了两种情况,即导频符号数量较少和循环前缀较短的情况,在这两种情况下深度学习方法都比传统的信道估计方法更稳健。有关更多信息,请参阅文献 [1] Narengerile 和 J. Thompson,“非正交多址无线系统中信号检测的深度学习”,2019 年英国/中国新兴技术 (UCET),格拉斯哥,2019 年,第 1-4 页。
  • 梳状导频OFDM
    优质
    本文提出了一种基于梳状导频结构的正交频分复用(OFDM)系统的信道估计新方法,优化了信道状态信息的获取与利用效率。 梳状导频 OFDM 信道估计
  • LS/MMSE和DNNOFDM及其MATLAB实现
    优质
    本文提出了一种结合局部斜率匹配最小均方误差(LS/MMSE)与深度神经网络(DNN)技术的正交频分复用(OFDM)信道估计方法,并提供了该算法在MATLAB中的实现细节。 1. 对传统信道估计算法LS(最小二乘)和MMSE(最小均方误差)在OFDM系统中的性能进行了比较。 2. 使用MATLAB构建了FC-DNN(全连接深度神经网络)的信道估计框架,参考文献为《Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems》。 3. 所有程序代码都附带详细注释以方便理解。 4. 包含两个文件夹,每个使用不同的调制阶数:QPSK(四相移键控)和8阶调制方式。 5. 程序完全采用MATLAB语言编写。