Advertisement

MMA7260加速度传感器电路设计方案。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本无线采集系统选用Freescale公司最新发布的低成本、单芯片、三轴加速度传感器MMA7260。这款微型电容式加速传感器集成了信号调理、单极低通滤波器以及温度补偿技术,并具备四种不同的加速度测量范围,具体包括1.5 g、2 g、4 g和6g。在CC1010与MMA7260的接口设计中,噪声问题至关重要。鉴于MMA7260内部采用开关电容滤波器,可能产生时钟噪声,因此需要在其XOUT、YOUT和ZOUT三个输出端分别连接RC滤波器以进行抑制。此外,还需要解决电压匹配问题:由于X、Y和Z轴方向的电压输出范围为0.45~2.85 V,而CC1010的ADC最大输入范围限定为0~VDD,其中VDD为3.3 V,该范围完全包含在ADC的输入范围内,因此无需额外的分压电阻进行调整。如图3所示,CC1010与MMA7260的接口电路设计充分考虑了这些因素。R31/C31、R41/C41和R51/C51的作用是有效地消除MMA7260内部采样的开关噪声,而GS1和GS2则用于实现量程的选择功能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于MMA7260
    优质
    本设计介绍了以MMA7260芯片为核心的加速度传感器电路方案,详细阐述了其工作原理、硬件构成及应用前景。 本无线采集系统采用了Freescale公司最新推出的一款低成本、单芯片三轴加速度传感器MMA7260。该微型电容式加速传感器融合了信号调理技术、单极低通滤波器和温度补偿功能,并提供了四种不同的加速度测量范围:1.5g、2g、4g和6g。 在CC1010与MMA7260的接口设计中,首要关注的是噪声问题。由于MMA7260内部集成了开关电容滤波器,会产生时钟噪声,因此需要分别在XOUT、YOUT和ZOUT三个输出端接入RC滤波电路来消除这些噪声。 另一个需要注意的问题是电压匹配。MMA7260的X、Y、Z轴方向上的电压输出范围为0.45~2.85V,而CC1010的ADC最大输入范围则是从0到电源电压(3.3V)。由于这个范围正好落在ADC的最大输入范围内,因此无需额外添加分压电阻。 图示展示了CC1010与MMA7260之间的接口电路。其中R31/C31、R41/C41和R51/C51用于滤除由内部采样过程产生的开关噪声;GS1和GS2则用来选择不同的量程设置。
  • MMA7260程序
    优质
    MMA7260是一款高性能三轴模拟加速度传感器,适用于各种运动检测和倾斜感应应用。本程序展示了如何通过微控制器读取并处理该传感器的数据。 该程序可以用来测试7260的性能,为两轮自平衡小车的调试提供很大的便利。
  • 规划
    优质
    本方案详细探讨了温度传感器电路的设计与规划,涵盖了选型、精度分析及优化策略等内容,旨在提升系统的可靠性和准确性。 PT100的检测需要使用恒流源电路,并且为了提高系统的抗干扰能力和可靠性,设计了滤波电路。由于该电路的设计原理是线性拟合,因此存在一定的精度误差。对于高精度要求的应用场合,可以通过软件补偿来解决这个问题。
  • ADXL345
    优质
    ADXL345是一款高性能三轴加速度计传感器,具有高分辨率和宽测量范围。适用于各种运动检测应用,如手机、游戏手柄及健康监测设备等。 亲测可用,具有3D实物效果。
  • 容式
    优质
    电容式加速度传感器是一种利用电容器原理检测加速度变化的精密器件,广泛应用于汽车安全气囊、运动器材及消费电子产品中,具有高灵敏度和稳定性。 电容式加速度计是一种基于电容原理的传感器,用于测量物体在运动中的加速度变化。它主要由固定电极(定梳齿)和可移动电极(动梳齿)组成,当受到外力作用时,内部的质量块会由于惯性而相对于固定电极产生位移,从而改变两个电极之间的距离,进而通过检测这种变化来确定加速度的大小。 本段落重点讨论了一种单自由度一字梁结构的电容式加速度计的设计与仿真过程,并使用ANSYS软件进行建模和分析。该设计参考了ADI公司的产品方案,采用多晶硅作为材料,因其具有良好的机械性能及半导体特性。模型主要由动梳齿、质量块、一字梁以及锚点组成,其中动梳齿与质量块相配合以响应加速度产生的力。 在ANSYS软件的前处理阶段中选择了SOLID185三维实体单元进行建模,并根据多晶硅材料的物理性质设置了相应的杨氏模量、泊松比和密度。之后对模型进行了网格划分,确保了计算精度与效率。在约束设置方面,锚点外侧面自由度被限制以模拟实际固定连接条件;同时施加沿y轴方向上的惯性载荷来模拟不同加速度条件下设备的工作状态。 ANSYS求解器完成了静力学分析和模态分析的计算任务,所得位移与应力分布情况揭示了结构在受力时的行为特征。当加载1g(重力加速度)的情况下,质量块及梳齿间的相对移动最为显著;最大位移发生在一字梁与质量块连接处的直角位置,并且此处也是应力集中的地方,可能成为未来设计中需要重点关注的部分。随着外加速条件增加,整体结构表现出线性变化的趋势,其中电容间距对测试范围具有决定性影响。 此外通过模态分析发现了四种基础振动模式:直线运动和旋转等现象有助于我们了解其动态响应特性。综上所述,该研究详细探讨了电容式加速度计的工作机制与设计要点,并展示了如何利用仿真工具进行性能评估的方法。为了进一步优化设备的设计方案,可以考虑改进结构形状以减少应力集中、调整间距范围或选择更优质的材料来提高整体使用效果。 这种深入的理解对于开发高精度和高性能的加速度传感器至关重要,在航空、航天、汽车电子及消费电子产品等领域具有广泛的应用前景。
  • 基于的角测量仪硬件
    优质
    本项目专注于开发一种利用加速度传感器进行角度测量的硬件装置。通过优化电路设计,实现了高精度、低成本的角度监测解决方案,在多种应用场景中表现出色。 在现代控制系统中,角度测量装置对于实现高精度至关重要,其性能直接影响整个系统的精确度与稳定性。当前利用加速度传感器进行高精度角度测量的研究主要集中在单轴方向上。本段落将重点探讨使用双轴加速传感器ADXL202来实施高精度角度测量的硬件技术方法。
  • CC2530 IIC
    优质
    本项目介绍如何在CC2530平台上通过IIC总线连接并配置加速度计传感器,实现数据读取与处理。适合物联网开发学习。 加速度传感器的测试程序非常实用,其中控制部分采用51单片机。
  • 三轴
    优质
    三轴加速度计传感器是一种能够测量物体在三个维度上的加速度变化的电子设备,广泛应用于运动监测、汽车安全气囊系统及游戏手柄等领域。 三轴加速度传感器在多种实验应用中有重要作用,例如智能小车、自主飞机等领域。该传感器的原理是通过检测物体沿三个相互垂直方向上的加速度变化来实现对运动状态的精确测量与控制。