Advertisement

BM算法用C语言编写。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
BM算法作为一种基础算法,在密码学领域占据着举足轻重的地位。它被广泛应用于工程的各个环节,是至关重要的组成部分。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CBM的实现
    优质
    本文介绍了在C语言环境下实现BM(Boyer-Moore)字符串搜索算法的过程和技术细节,包括坏字符和好_suffix_两种核心偏移计算方法。 基础算法BM算法在密码学领域非常重要。在整个工程应用中都占据着关键地位。
  • CBM的实现
    优质
    本文章介绍了如何在C语言环境中实现高效的字符串匹配算法——BM(Boyer-Moore)算法,并探讨了其具体应用与优化技巧。 BM算法的实现代码可以在支持GCC编译的环境中使用。
  • C实现的BM.docx
    优质
    本文档详细介绍了如何使用C语言编程实现高效的字符串匹配算法——Boyer-Moore算法(简称BM算法),包括其原理、具体步骤及代码实践。 BM算法是Boyer-Moore算法的简称,它是一种用于在文本串中查找模式串的高效字符串搜索算法。以下是关于BM算法C语言实现的相关内容: 相关概念: - 字符串搜索算法:BM算法属于此类别,旨在快速定位文本中的特定子序列(即模式)。 - Boyer-Moore算法:一种高效的字符串匹配方法,通过预处理步骤优化了搜索效率。 在C语言中实现BM算法主要包括两个核心函数:MakeSkip和MakeShift。 **MakeSkip 函数** 该函数用于根据坏字符规则进行预处理,并生成一个坏字符表。其定义如下: - **原型**: `int* MakeSkip(char *ptrn, int pLen)` - **目的**: 创建一张映射每个可能的查询字符到模式串中最后一个匹配位置的表格。 - **参数**: - `ptrn`: 需要在文本中搜索的目标字符串(即模式); - `pLen`: 模式串的长度。 实现步骤包括: 1. 分配足够的内存来存储每个可能输入字符的位置信息,通常为256个整数。 2. 初始化所有位置值为模式串的最大长度,以处理未在模式中出现的情况。 3. 遍历模式字符串,并更新与之匹配的字符对应于坏字符表中的偏移量。 **MakeShift 函数** 此函数依照好后缀规则预处理数据并建立一个相应的表格。定义如下: - **原型**: `int* MakeShift(char* ptrn, int pLen)` - **目的**: 构建一张映射模式串中每种可能的结尾片段到其在字符串内最右匹配位置偏移量的表。 - **参数**: - 同上。 实现步骤涉及: 1. 分配内存用于存储好后缀表,大小等于模式长度加一; 2. 遍历模式字符,并设置每个单元格值对应于该片段在字符串内的最右匹配位置偏移量; 3. 使用do-while循环检查边界内是否已经完成所有可能的子串匹配。 BM算法C语言实现的优点包括: - 能够快速定位大规模文本中的特定短语或单词。 - 适用于需要高效处理大量数据的应用场景,如搜索引擎、数据分析和信息检索系统等。
  • BM的完整C实现
    优质
    本项目提供了一种全面且高效的C语言版本BM(Boyer-Moore)字符串搜索算法实现,适用于快速查找大规模文本中的模式匹配。 **BM算法完整实现C代码** BM(Boyer-Moore)算法是一种在大文本中高效查找子串的字符串搜索算法,由Robert S. Boyer和J. Strothoff于1977年提出。相比于简单的线性查找,BM算法在处理大量数据时能显著提高查找效率。该算法的核心思想是利用坏字符规则和好后缀规则来减少不必要的字符比较,从而更快地定位到目标子串。 **坏字符规则**:当匹配过程中出现不匹配的字符时,可以根据这个“坏字符”在模式串中的位置和在主串中的当前位置,通过预计算的坏字符表来决定下一个比较的字符位置。坏字符表记录了模式串中每个字符最后一次出现在模式串的位置,这样可以跳过尽可能多的不相关字符。 **好后缀规则**:好后缀规则用于处理模式串中已匹配的字符序列。如果在某个位置匹配失败,我们可以检查模式串的后缀是否与模式串的前缀相同,如果相同,那么我们可以跳过与这个后缀长度相等的字符。这种规则可以利用已匹配的部分,避免重复比较。 在C语言中实现BM算法通常包括以下步骤: 1. 初始化坏字符表:根据模式串构建坏字符表,记录每个字符在模式串中的最后出现位置。 2. 主循环:从主串的起始位置开始,逐个字符与模式串进行比较,直到找到匹配或到达主串末尾。 3. 处理不匹配:当出现不匹配时,根据坏字符规则和好后缀规则确定下一个比较的字符位置。 4. 继续比较:更新主串和模式串的比较位置,继续进行下一轮比较,直至找到匹配子串或遍历完主串。 `BMSearch.cpp`文件很可能是实现BM算法的C代码,其中包含了算法的主要逻辑。在实际使用中,将此文件解压并添加到C/C++的控制台项目中,可以通过读取输入的主串和子串进行测试。通过调试和运行可以直观地看到BM算法如何在不同情况下提高查找效率。 在C语言中实现时需要注意内存管理、指针操作以及错误处理等问题。例如,确保输入字符串的有效性,避免越界访问,并且在必要时释放动态分配的内存。同时为了提高代码可读性和可维护性,可以将算法的各个部分分解为单独的函数,如构建坏字符表和执行匹配过程等。 总之,BM算法是字符串搜索领域的一个重要工具。通过巧妙地利用模式串的信息,在大规模文本中快速定位目标子串的能力使得它在优化文本处理和数据分析任务上具有重要意义。理解和掌握BM算法的实现原理对于提高相关应用性能至关重要。
  • C走迷宫
    优质
    本项目采用C语言编程实现经典的走迷宫问题求解算法。通过递归或广度优先搜索等方法探索迷宫路径,寻找从起点到终点的最佳路线,展示算法的魅力与实用性。 用C语言实现走迷宫是一个经典的计算机科学问题,目的是在一个二维数组表示的迷宫中找到从起点到终点的一条路径。这个问题可以通过深度优先搜索(DFS)或广度优先搜索(BFS)来解决。 ### 深度优先搜索(DFS) 该算法的基本思想是从入口开始,尝试每一步可能的方向,并记录已经走过的路。如果在某一步没有继续前进的路,则回溯到上一个位置并选择另一个方向。这样一直进行下去直到找到出口或所有路径都被探索过。 使用C语言实现时,可以利用递归函数来追踪迷宫中的路径。首先定义一个二维数组存储迷宫的数据,并用标志变量标记是否找到了出路。接着编写一个递归的DFS函数,在其中更新当前位置的状态并检查四个方向上是否有可行的下一步(即不是墙且未被访问过)。如果找到出口,则结束搜索,否则继续在新的位置调用该函数。 ### 广度优先搜索(BFS) 广度优先搜索则以层次的方式探索迷宫。从起点开始,逐层扩展所有可能的方向,并使用队列来存储待处理的位置。对于每个新发现的点,如果它是出口,则算法结束;否则将其加入到队列中进行进一步检查。 在C语言里实现BFS时,可以创建一个结构体用于保存坐标信息并利用标准库中的队列数据结构(如`std::queue`)来管理待处理的位置集合。通过循环遍历这个队列直到找到出口或所有可能路径都被探索完为止。 以上就是使用DFS和BFS两种方法在C语言中解决走迷宫问题的基本思路和技术实现方式。
  • C程序
    优质
    这段简介可以这样编写:“用C语言编写的算法程序”介绍了一系列采用C编程语言实现的基础到高级的数据结构与算法。通过具体示例和详细的注释帮助学习者理解和掌握各种经典算法和数据结构的原理及其应用,适合编程初学者以及希望提升自身C语言水平的进阶用户阅读和实践。 C语言是一种广泛应用于系统编程、嵌入式开发、软件工程等多个领域的高级编程语言,以其高效性、灵活性以及可移植性著称。在讨论“用C语言编写的算法程序”中,我们可以深入探讨如何利用这种语言来实现各种算法,并借此提高我们对这些算法的理解和提升自身的编程技能。 一、基础算法 1. 排序算法:使用C语言可以轻松地实现多种排序方法,例如冒泡排序、选择排序、插入排序以及快速和归并排序等。每种方法都有其特定的优点与局限性,在不同场景下适用度各有千秋;理解这些算法的工作原理及其性能特点对于优化程序至关重要。 2. 搜索算法:其中包括线性搜索、二分查找及哈希表查询等方式,它们在数据检索中扮演着重要角色。C语言的指针操作使得实现上述技术变得直观而高效。 3. 动态规划问题求解:如背包问题、最长公共子序列和最短路径计算等也是常用场景之一;通过构建状态转移方程,动态规划能够有效地解决复杂的问题。 二、数字处理与DSP(数字信号处理) 1. 数字滤波器设计:在该领域内,C语言可用于创建IIR(无限脉冲响应)及FIR(有限脉冲响应)类型的过滤机制,它们对于信号的净化与频谱分析有着关键作用。 2. 快速傅里叶变换(FFT)算法实现: C语言支持快速执行离散傅立叶转换操作,这对于音频处理和图像解析等应用至关重要。 3. 生成实际信号或测试系统性能的基础:例如正弦波、方波及随机噪声的创建,这些都是模拟真实世界数据的重要手段。 三、数据结构 1. 链表: C语言中的链表实现允许高效地添加与删除元素,适用于需要动态调整大小的数据集合。 2. 树形结构应用广泛:包括二叉树、平衡树(如AVL和红黑树)以及堆,它们在解决查找问题及排序任务中扮演重要角色。 3. 图算法实践: 如迪杰斯特拉最短路径算法与弗洛伊德-沃舍尔所有对的最短路径计算等;C语言的高度灵活性使得实现这些复杂的图论方法变得可能。 四、文件操作和内存管理 通过使用诸如fopen, fwrite及fread等一系列函数,C语言提供了便捷的方法来进行文件读写。同时,C语言还具备强大的内存控制能力(如malloc、calloc、realloc与free),这使开发者能够精确地掌控程序的内存占用情况;然而,在此过程中也必须注意避免出现内存泄漏或野指针等问题。 五、编程技巧 1. 函数封装:C语言鼓励模块化设计,通过将代码打包成独立的功能单元可以提高其可重用性和维护性。 2. 结构体与联合体的应用: 结构体允许不同类型的数据组合在一起;而使用联合则可以在同一内存区域中存储不同类型的变量。 3. 枚举类型和位操作:枚举提供了一种清晰定义常量的方式,同时位运算在处理硬件接口及代码优化方面非常有用。 综上所述,“用C语言编写的算法程序”涉及了从基础编程到高级技术的广泛范围。通过学习并实践这些内容,可以显著提升个人的技术水平,并能够更有效地解决实际问题;结合具体需求灵活运用所学知识,则可编写出既高效又可靠的代码。
  • C的TDMA
    优质
    本项目采用C语言实现TDMA(时分多址)算法,旨在优化无线通信中的数据传输效率与资源分配,适合研究与工程应用。 有限元法、有限差分法以及有限体积法离散的方程通常为三对角方程组。使用C语言编写的TDMA算法可以用来求解这类三对角方程组。
  • C的Prim
    优质
    本段介绍使用C语言实现的Prim算法,该算法用于计算加权图中的最小生成树。代码简洁高效,适合初学者学习和理解最小生成树的基本概念与应用。 用C语言编写的Prim算法可以作为学习参考。
  • C的HMM实现
    优质
    本项目采用C语言实现了隐马尔可夫模型(HMM)相关算法,适用于序列预测、模式识别等领域。代码简洁高效,具有良好的移植性和扩展性。 用C语言实现的HMM适合研究算法的人学习,简洁明了的算法有助于提高学习效率。
  • C的数字电源
    优质
    本简介介绍了一套使用C语言开发的高效数字电源控制算法,旨在优化现代电子设备中的电力转换效率与稳定性。 数字电源算法用C语言编写。