Advertisement

TI官方发布的DC-DC开关电源设计电源拓扑手册。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
TI公司发布的电源拓扑手册,专注于直流-直流(DC-DC)和开关电源的设计,这些资源的获取情况十分困难。这份手册能够帮助读者迅速掌握开关电源设计的关键知识和技术。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • TI,涵盖DC-DC
    优质
    本手册由德州仪器提供,详细介绍了各种DC-DC及开关电源的设计方法与技巧,是电源工程师不可或缺的参考资源。 TI官方的电源拓扑手册涵盖了DC-DC转换器的设计以及开关电源的相关资源,对于快速入门开关电源设计非常有帮助。
  • DC/DC PWM
    优质
    DC/DC PWM开关电源是一种高效的电力转换装置,通过脉宽调制技术将直流电转换为另一固定或可调节电压的直流电输出,广泛应用于电子设备和通信系统中。 1. 概述 2. DC-DC变换器的基本拓扑电路 3. 带变压器隔离的DC-DC变换器原理 4. PWM控制原理
  • 基于DC/DC
    优质
    本项目致力于研发一种创新性的负电压DC/DC开关电源,采用先进的设计理念和技术方案,旨在提高转换效率和稳定性。通过优化电路结构及选择高效半导体器件,实现了宽输入范围、高功率密度与良好的负载瞬态响应特性,适用于各种电子设备的电源管理需求。 随着电子技术的快速发展,现代电子测量装置通常需要负电源来为内部的集成电路芯片与传感器供电。例如集成运算放大器、电压比较器以及霍尔传感器都需要这种类型的电源。负电源的质量直接影响到这些设备运行的表现,甚至可能导致采集的数据出现显著偏差。目前,大多数电子测量装置采用抗干扰能力强且效率高的开关电源作为其负电源解决方案。
  • DC/DC技术中
    优质
    本论文探讨了负电压DC/DC开关电源的设计原理和技术应用,旨在提高电源转换效率和稳定性。通过优化电路结构与控制策略,实现高性能电源解决方案。 以往的隔离开关电源技术通过变压器实现负电压输出,这会导致电源体积增大及电路复杂性增加。随着专用集成DC-DC控制芯片的发展,非隔离式负电压开关电源因其结构简单、体积小巧而在电子测量设备中越来越受欢迎。因此,对这类电源的研究具有重要的实用价值。 传统的非隔离负电压开关电源主要有两种电路拓扑(如图1和图2所示)。根据图3的滤波输出电容充电电流波形可以看出,在相同电感峰值电流的情况下,采用图2结构可以得到更小输出纹波的负电压,并且其负载能力也更强。然而,由于图2中的开关器件需要连接到电源的负极,这使得控制电路比图1更为复杂,因此目前市场上尚未实现这种电路结构。
  • DC-DC管理芯片(续)
    优质
    本文章是关于DC-DC开关电源管理芯片的设计探讨,继前文之后继续深入分析相关技术细节和优化方案。 本段落承接《芯片设计实例篇:DC-DC 开关电源管理芯片设计(上篇)》的内容,专注于讲解芯片设计的细节。对于尚未阅读过该系列文章的读者,建议从“上篇”开始。 一、内部模块的设计 目标是开发一个基于PWM控制的升压式DC-DC电源转换芯片。此芯片将实现一种双环路(电压和电流)的一阶控制系统,并采用电流模式PWM技术。在这一设计中,我们将集成包括控制电路、驱动电路、保护电路以及检测电路在内的多个模块。 我们的研究结合了电力电子技术和微电子技术,在BiCMOS工艺的基础上,具体探讨如何高效地实现DC-DC变换器的集成化解决方案。
  • 基于51单片机DC-DC
    优质
    本设计介绍了采用51单片机控制的高效DC-DC开关电源电路方案,详细阐述了硬件架构与软件实现方法。 标题中的“基于51单片机的DC-DC开关电源电路方案设计”指的是使用如AT89C51这样的51系列微控制器来控制直流到直流转换器的工作流程。这款微控制器以其低功耗、高性能以及易于编程的特点而闻名,适用于各种嵌入式系统,包括电力管理领域。 DC-DC开关电源是一种高效的能量转换装置,通过快速切换的半导体元件(例如MOSFET或IGBT)实现从输入电压到不同输出电压等级的有效转变。这种类型的电源变换器有升压、降压以及升降压等多种类型,适用于电子设备、通信设施和电动汽车等广泛的应用场景。 文中提到“包含完整的电路原理图”意味着该资料涵盖了转换过程中的所有细节设计内容。用户可以参考这些图纸来进行PCB布局及仿真测试,并实现类似的方案设计。“AT89C51”是51系列微控制器的一个具体型号,它内置了8KB的闪存和4KB RAM,并具有并行I/O端口功能,能够对电源转换进行精准调控。例如通过调整单片机发出的PWM信号来控制开关元件的工作状态以调节输出电压。 “开关电源”是该设计方案的核心部分,其主要构成包括主开关组件、电感器、滤波电容以及反馈电路和逻辑控制系统等元素,在51系列微控制器的操作下实现高效的能量转换。“方案设计”通常涵盖需求分析、电路规划、元器件挑选及布局布线等多个环节。在进行这些步骤时需要考虑诸如效率优化、温度管理和电磁兼容性等因素,同时确保单片机程序的正确编写和运行。 文件列表中包含多个PDF文档与PNG图像文件等资料内容,其中“51 DC-DC开关电源原理图.pdf”可能详细介绍了整个电路设计,“.png”的图片则展示了关键部分如控制回路、功率级或实物展示。这份技术包提供了从理论到实践的全面指导,对于学习和掌握如何利用51单片机来操控DC-DC转换器的设计工作具有重要参考价值。无论是初学者还是经验丰富的专业人士都能从中受益匪浅,并提升自己的电源设计技能水平。
  • TPS5430 DC-DC
    优质
    《TPS5430 DC-DC电源设计与电路方案》深入探讨了采用TPS5430芯片进行高效、稳定的直流转换器开发,涵盖原理图绘制、元件选型及调试技巧。 自己设计了一块DC-DC电源板,使用了TI的TPS5430芯片。该电路板输入电压最高可达36V,输出稳定在5V,并且实测最大电流为3A。技术工程师可以参考此设计。
  • DC-DC环路补偿器.pdf
    优质
    本文档详细探讨了DC-DC开关电源环路补偿器的设计方法与实践应用,旨在提高电源系统的稳定性及响应速度。 本段落档介绍了数字DC/DC开关电源环路补偿器的设计过程。首先建立了系统的S域小信号模型,并采用数字重设计法根据给定的系统参数设计了数字补偿器。通过使用SISODesignTool仿真平台,结合伯德图分析和根轨迹法,在连续域中设计了模拟补偿器并进行了离散化处理。 在构建s域模型时,考虑到了模数转换器及数字脉宽调制发生器产生的延迟效应的影响,这使得所设计的补偿器能够更好地适应采样速率的变化。基于这种方法开发出的数字补偿器可以实现对脉宽调制信号的精确编程控制,并确保变换器在闭环工作模式下具有良好的动态性能。 最后通过仿真实验验证了该设计方案的有效性。
  • DC-DCEMI分析及优化
    优质
    本文深入探讨了DC-DC开关电源中的电磁干扰(EMI)问题,并提出了一系列有效的优化设计方案,旨在减少电磁噪声,提高电源系统的稳定性和兼容性。 现代电力电子系统通常在开关模式下运行,会产生较大的电磁干扰(EMI)。这一问题一直是电力工程师们关注的焦点,并且解决它既困难又耗时。本段落将探讨EMI是如何产生的、如何传播以及怎样优化并解决问题。 常见的缩略语包括: - EMC:电磁兼容性 - EMI:电磁干扰 - EMS:电磁抗扰度 - IEC:国际电工委员会
  • 稳压DC-DC详细路图
    优质
    本资料详尽介绍了稳压电源、DC-DC电源和开关电源的工作原理及其电路设计,包含大量实用电路图,是电子工程爱好者和技术人员不可或缺的学习与参考资源。 一、稳压电源 1. 3~25V电压可调电路图:此稳压电源的调节范围在3.5V到25V之间,输出电流大,并采用可调稳压管式电路以获得平稳的输出电压。工作原理如下:整流滤波后的直流电压由R1提供给调整管基极使其导通,在V1导通时通过RP、R2使V2也导通,随后V3也开始导通;此时,V1、V2和 V3 的发射极与集电极的电压不再变化(其作用类似于稳压管)。调节 RP 可以得到稳定的输出电压,而 R1、RP、R2 和 R3 的比值决定了电路输出的电压。 2. 10A/3~15V可调稳压电源:无论是在电脑维修还是电子制作中都离不开稳定可靠的直流电源。这里介绍一个可以从3V到15V连续调节,最大电流可达10A的稳压电源方案。该设计采用高精度标准电压源集成电路TL431,并具备温度补偿特性以确保更高的稳压精度,适用于大部分常规维修需求。 二、开关电源UC3842工作原理:下图展示了 UC3842 的内部结构框图和引脚配置。UC3842 使用固定频率脉冲宽度可调的控制方式,共有八个引脚。各引脚的功能如下: ①脚是误差放大器输出端,外部连接电阻以实现特定功能。 其余部分未详细列出,如果需要完整信息,请参考相关技术文档或资料。