
利用MATLAB解决排队论问题
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本项目运用MATLAB软件工具,针对经典排队系统模型进行仿真与分析,旨在探索不同参数设置下系统的最优配置方案。通过理论建模和数值模拟相结合的方法,深入研究排队系统的性能指标,如等待时间、服务效率等,并提出优化策略以提高服务质量及运营效率。
排队论在日常生活中随处可见,无论是乘客购票的队伍还是市内电话占线的现象都属于此类问题的研究范畴。这一理论最初由丹麦数学家、科学家及工程师A.K.埃尔朗在1909年解决自动电话设计时提出,并称之为话务理论。他借鉴了热力学统计平衡理论的思想,成功建立了电话系统的统计平衡模型,从而推导出了著名的埃尔朗损失率公式。自那时起,这个公式被广泛应用于电话系统的设计中。
20世纪30年代,苏联数学家А.Я.欣钦将处于统计平衡状态的电话呼叫流定义为最简单流,并引入了有限后效流等概念和定义。瑞典数学家巴尔姆则进一步分析了电话呼叫的本质特性,从而推动了排队论的研究进展。
进入50年代初以后,美国数学家对生灭过程进行了深入研究,英国数学家D.G.肯德尔提出了嵌入马尔可夫链理论,并且提出了一套用于分类不同队型的方法。这些研究成果为排队论奠定了坚实的理论基础。
在此之后,L.塔卡奇等人将组合方法引入到排队论中,使得该理论能够更好地应对各种类型的排队问题。自70年代以来,人们开始研究复杂的排队网络以及复杂情况下求解渐近解等问题,并且这成为现代排队论的主要发展趋势。
全部评论 (0)
还没有任何评论哟~


