Advertisement

STM32平台上的信号发生器设计报告。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该信号发生器是一种能够产生特定周期性时间函数波形信号的设备,其频率范围具有可调性。本设计巧妙地结合了STM32微控制器和AD9854正交正弦信号发生器,从而能够生成一系列信号,包括正弦波、方波以及三角波等,并且具备幅度可调、频率可调以及实时显示等实用功能。具体而言,该设计成功实现了100kHz的正弦波、三角波和方波输出,生成的波形表现出卓越的稳定性,且几乎没有明显的失真现象。总体而言,这类信号发生器因其高频率分辨率、较高的集成度以及灵活的输出波形特性而备受青睐。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32——电子大赛.pdf
    优质
    本报告详细介绍了基于STM32微控制器的信号发生器的设计过程与实现方案,涵盖硬件选型、电路设计及软件开发等环节,并总结了作品在电子设计大赛中的表现和经验。 信号发生器是一种能够产生特定周期性时间函数波形的设备,并且可以调节频率范围。本设计采用STM32单片机与AD9854正交正弦信号发生器相结合,实现可调幅度、频率以及实时显示功能的同时输出正弦波、方波和三角波等不同类型的信号。该设计方案能够稳定地产生无明显失真的100kHz的正弦波、三角波及方波,并具备高频率分辨率、高度集成性和灵活多变的输出形式等特点。
  • ——课程
    优质
    本设计报告详细记录了信号发生器的设计过程与分析结果。通过理论研究及实践操作,探讨了多种信号类型的发生原理及其应用价值,旨在完成《电路设计》课程要求的任务,并为实际工程提供参考依据。 本设计综合运用了D/A转换器、定时器/计数器电路以及中断技术,通过PC机的定时功能产生锯齿波、三角波和正弦波等多种模拟信号输出,并且可以通过PC机键盘调节信号频率。
  • 关于555.pdf
    优质
    本设计报告深入探讨了555信号发生器的工作原理及其应用,并详细介绍了该设备的设计过程、电路图和测试结果。 使用题目指定的综合测试板上的NE555芯片和一片四运放LM324芯片制作一个可以输出脉冲波、锯齿波以及一次和三次正弦波,并且频率可调的功能电路。设计并实现该方案,确保实际电路满足实验要求的各项指标。
  • 函数课程
    优质
    本课程设计报告详细探讨了函数信号发生器的设计与实现。通过理论分析和实验验证,介绍了信号发生器的工作原理、电路设计及功能测试,为电子工程学习者提供了宝贵的实践指导。 函数信号发生器依次输出正弦波、方波和三角波。使用集成块uA741来实现集成运放功能。
  • 脉冲课程
    优质
    本报告详细介绍了脉冲信号发生器的设计与实现过程。通过理论分析和实验验证,探讨了电路原理及参数选择,展示了从方案制定到成品调试的全过程。 在模拟及数字电路的应用中,脉冲信号扮演着重要角色。它们不仅可以表示信息,还能作为载波使用,在诸如脉冲编码调制(PCM)与脉冲宽度调制(PWM)等技术里发挥关键作用,并且可以充当各种数字电路和高性能芯片的时钟信号。根据课程设计任务的要求,我们基于模拟电子技术和数字电子技术的相关知识,设计并制作了一款具备频率可调节功能的脉冲信号发生器。
  • 函数
    优质
    本设计报告详细探讨了函数信号生成器的设计与实现过程。通过分析各种函数信号的特点及其应用场景,报告提出了一种高效实用的设计方案,并对其性能进行了全面测试和评估。 函数信号发生器的设计报告涵盖了设计原理及设计原理图的内容。
  • 关于FPGA调制研究.docx
    优质
    本文档探讨了在FPGA平台上开发高效的调制信号生成器的设计与实现方法,旨在提高通信系统的性能和灵活性。 直接数字频率合成(Direct Digital Frequency Synthesis, 简称 DDS)技术是现代通信系统中的关键组成部分之一,它通过使用数字算法生成连续的频率信号,并具备高精度、高速度及灵活性的特点。本段落主要探讨了如何利用FPGA(Field-Programmable Gate Array)实现DDS技术及其在模拟调制和数字调制系统的应用。 DDS的核心在于运用高速数模转换器(DAC),将数字信号转化为模拟信号。其基本原理是通过累加相位寄存器的值,并将其除以相位累加器的宽度,产生一个角度,该角度可映射至正弦表或查找生成器(LUT)来获取对应的幅度值,从而得到所需的频率波形。 FPGA在DDS设计中的应用主要体现在其强大的并行处理能力和灵活性。借助DSP Builder工具,可以便捷地构建DDS模型,并实现具有灵活参数调整能力的系统。该工具提供了高级语言如C和C++与硬件描述语言(HDL)之间的接口,使开发人员能够方便地进行算法开发及硬件设计。 本研究中探讨了多种调制信号类型的设计方法,包括AM、FM、ASK、FSK以及PSK等,并基于DDS原理进行了建模。首先在Matlab和DSP Builder上构建基本模型,然后通过Altera公司的Signal Compiler工具将这些模型转换为Quartus II可识别的VHDL源代码,这是从软件设计过渡到硬件描述的关键步骤。 随后,在选择Altera Cyclone系列FPGA芯片EP1C3T144C8进行物理实现的过程中,使用ModelSim进行了功能仿真以确保逻辑正确性,并通过Quartus II完成了时序仿真实验来评估实际性能。这些实验旨在验证设计是否符合需求并能准确生成调制信号。 为了进一步确认设计的实用性和准确性,我们利用EDA设备进行了实物测试。产生的信号经由示波器观察和分析,这有助于直观地了解信号的质量以及在不同调制方式下的表现情况。 此外,文章还介绍了DSP Builder中层次化的设计方法,在构建复杂的通信系统时非常有用。通过将整个设计分解为更小、更容易管理的模块来提高系统的可维护性和重用性。 综上所述,本段落详细探讨了基于FPGA实现DDS调制信号发生器的方法和流程,包括理论基础、设计步骤、仿真验证及实物测试等方面的内容。这种方法不仅适用于各种模拟与数字调制信号生成需求,也为复杂通信系统中的信号处理提供了有效的解决方案,并能够灵活高效地应用多种调制技术以满足不断增长的行业需求。
  • 基于STM32微控制
    优质
    本项目旨在开发一款基于STM32微控制器的多功能信号发生器,能够产生多种标准波形信号,适用于电子实验与教学。 本系统以STM32F103单片机为核心控制单元,通过按键输入所需的波形参数(数字量),然后利用STM32F103自带的数模转换器将这些数字信号转化为模拟信号来调整波形的幅值、频率及方波占空比。系统支持电压步进为100mV,频率步进为50Hz,并且可以调节方波占空比。所用按键为独立式设计,用于切换不同功能如选择波形类型、查看时钟信息以及调整幅值和频率等参数。 在实现过程中,通过改变中断间隔时间来完成对频率的调节,而幅值则由数字大小直接决定。为了合成复杂的波形信号,系统使用了128个点来进行精确描绘。显示部分采用TFT液晶屏实时展示当前选择的波形名称、以及对应的幅值、频率和占空比等参数变化情况。 该资料包包含源代码、原理图、PCB设计文件、元器件清单、参考论文及答辩技巧等相关内容,适合于进行类似课题毕业设计的学生作为参考资料。
  • 基于LabVIEW虚拟及详细
    优质
    本项目详细介绍了一种基于LabVIEW平台开发的虚拟信号发生器的设计与实现。通过软件编程模拟各种波形输出,提供给电子实验和教学使用,具有界面友好、操作简便的特点。文中详述了系统架构、模块功能以及关键技术,并附有详细的测试结果分析。 设计目的及任务: 1. 掌握利用D/A转换技术和计算机资源来实现数字式信号发生器的设计方法。 2. 了解虚拟信号发生器对信号频率的控制方式。 3. 理解影响虚拟信号发生器中信号频率上下限的因素。 设计内容包括以下方面: 1. 利用实验室提供的仪器设备和软件,学生自行完成虚拟信号发生器的设计工作; 2. 完成该装置在仿真环境下的显示功能,在图形界面窗口内观察正弦波、方波及三角波等模拟输出的信号形态; 3. 实现从数字形式到物理量的实际转换过程,并进行相应的频率测量实验。使用实验室内的频率计来检测实际生成的各种信号的具体频率值。 4. 进行滤波操作,通过选择不同截止频点对所产生出来的各种类型电信号实施过滤处理。 5. 测定模拟输出电压在经过和未经历任何滤波程序前后的失真程度。