Advertisement

Halcon对选定区域中的直线进行检测和标注。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
Halcon代码被应用于检测选定区域内的直线,并对这些直线进行标注以进行可视化呈现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Halcon识别并线
    优质
    本教程介绍如何使用Halcon软件在指定区域准确识别和标记直线的方法和技术,适用于自动化检测与机器视觉领域。 Halcon代码用于检测选择区域中的直线,并将这些直线标注出来。
  • Halcon模板匹配
    优质
    本简介探讨在Halcon软件中如何为特定区域选取合适的模板匹配方法,涵盖参数设定与优化技巧。 Halcon可以对特定区域进行模板匹配,并提供匹配时间和得分。可以通过调整相关参数来优化匹配结果。
  • 利用JavaOpenCV图像比及差异
    优质
    本项目采用Java与OpenCV库开发,旨在实现高效精准的图像自动对比功能,并智能标识出两幅图片间的不同区域。 在IT行业中,图像处理是一项关键技术,在自动化测试、监控系统及数据分析等领域有着广泛应用。Java结合OpenCV库可以有效地实现这一目标。本教程将详细介绍如何使用Java与OpenCV进行图片对比,并标记出两幅图像之间的差异部分。 OpenCV是一个开源的计算机视觉库,它包含了丰富的图像处理和计算机视觉算法。在Java平台上,我们可以通过Java绑定来调用OpenCV的功能。开始之前,请确保你的开发环境中已经安装了OpenCV并配置好相应的环境变量。如果运行时遇到找不到`opencv_java470.dll`文件的错误,则需要将其复制到Windows系统的`C:\Windows\System32`目录下。 Java是编写图像处理程序的一种常用语言,具有跨平台性、稳定性和丰富的库支持的特点。对于这个项目,你需要JDK11或更高版本,因为OpenCV的Java接口可能依赖于特定版本的Java运行时环境。 进行图片对比并标记差异部分的基本步骤如下: 1. **加载图像**:使用OpenCV的`imread`函数读取两幅图像,并确保它们具有相同的尺寸以方便比较。 2. **像素级比较**:通过遍历两幅图像中的每个像素,比较其RGB值。可以采用减法操作(一幅图中某像素值减去另一幅对应位置的像素值)得到差值图像。 3. **设定阈值**:指定一个差异阈值,当两个像素之间的差超过该阈值时,则认为它们存在显著差别。这有助于过滤掉微小噪声和不重要的变化。 4. **标记差异**:对差值得到的结果图进行处理,在超出设置的阈值区域用特定颜色(如红色)标示出来以创建新的标记图像。 5. **显示结果**:利用OpenCV提供的`imshow`函数展示原始图片、计算出的差值图及最终标注好的差异图,使用户能直观地看到两张图片之间的不同之处。 为了更好地理解这个过程,可以参考以下Java代码实例: ```java import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.imgcodecs.Imgcodecs; public class ImageComparator { static { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); } public static void main(String[] args) { // 加载图像 Mat img1 = Imgcodecs.imread(image1.jpg); Mat img2 = Imgcodecs.imread(image2.jpg); if (img1.width() != img2.width() || img1.height() != img2.height()) { System.out.println(Images must have the same dimensions.); return; } // 创建差值图像 Mat diff = new Mat(img1.size(), CvType.CV_8UC3, new Scalar(0)); Core.absdiff(img1, img2, diff); // 设定阈值并标记差异部分 double threshold = 50; Imgcodecs.imwrite(diff.png, diff); // 显示结果,这里省略了显示代码以简化示例 } } ``` 此段代码首先加载两幅图像,然后计算它们的差分,并设置阈值来标记差异。将原始图、差分图和标注后的差异图展示出来并保存为文件。 在实际应用中还可能需要考虑其他因素如:图像预处理(例如灰度化、直方图均衡)、使用更复杂的相似性测度方法或利用OpenCV的特征匹配功能,以提高对比准确性和鲁棒性。
  • Halcon线卡尺算法
    优质
    简介:本文探讨了在HALCON软件中应用的一种创新直线检测方法——卡尺算法。该技术通过模拟使用游标卡尺测量物体边缘的方式,精确地进行直线定位和尺寸测量,在工业视觉领域展现出卓越的性能与可靠性。 分享了一个使用Halcon进行直线检测的算法,该方法具有较强的可控性、稳定性和准确性。
  • Halcon识别与
    优质
    本简介介绍在机器视觉领域中使用Halcon软件进行图像处理时,如何运用其功能强大的工具来识别和分析特定区域,并实施精确的尺寸测量。 使用Halcon对图像中的多个矩形区域进行检测识别,并计算7个矩形的平均宽度。Halcon编译器版本为18.11 Steady。
  • 利用Matlab线
    优质
    本项目旨在通过MATLAB平台实现图像中直线特征的有效检测与分析,采用Hough变换等算法,适用于工程测量和自动化识别等领域。 基于Matlab的直线检测方法研究
  • 利用Halcon图像圆形及圆心
    优质
    本项目采用Halcon软件,探讨并实现了一种高效的图像处理方法,专注于自动识别和精确定位图像中的圆形物体及其中心点。通过一系列算法优化,提高了检测精度与速度,在工业自动化、机器人视觉等领域具有广泛应用前景。 dev_update_window (off) dev_close_window () 打开一个原点(左上角)在(0,0),宽高均为512像素的黑色背景图形窗口。 dev_open_window (0, 0, 512, 512, black, WindowID) 读取图像 read_image (Image, C:/Users/PC/Desktop/20210918211500906.png) 显示图像 dev_display (Image) 设置字体大小为22,使用单色字体,并开启文本抗锯齿功能。 set_display_font (WindowID, 22, mono, true, false) 在窗口中持续显示消息直到用户点击继续按钮。 disp_continue_message (WindowID, black, true) stop () 对图像进行二值化处理 threshold (Image, Bright, 90, 255) 计算并绘制最小外接矩形 shape_trans (Bright, rigontran, rectangle2) 设置显示颜色为绿色 dev_set_color (green)
  • 利用HALCON硬币
    优质
    本项目采用HALCON软件开发工具包,针对硬币识别与分类需求,实现高效、精准的硬币检测系统。通过图像处理技术优化硬币质量控制流程。 基于HALCON的硬币检测方法能够实现对不同种类、尺寸和材质的硬币进行高效准确地识别与分类。通过使用HALCON软件中的图像处理技术和机器学习算法,可以自动提取硬币的关键特征,并根据这些特征来判断硬币的具体类型和面值。这种方法在金融安全、自动化设备以及质量控制等领域具有广泛的应用前景。
  • C++使用OpenCV3霍夫圆线
    优质
    本文章介绍了如何利用C++编程语言结合OpenCV3库来实现图像中的霍夫圆与直线检测,适合计算机视觉爱好者和技术开发者参考学习。 在计算机视觉领域,OpenCV库提供了强大的图像处理和分析功能,其中包括霍夫变换(Hough Transform)算法,用于检测图像中的直线和圆。本篇文章将详细介绍如何使用OpenCV3和C++来实现霍夫直线检测和霍夫圆检测。 我们来看霍夫直线检测。霍夫直线检测是基于极坐标系统进行的,它通过将像素空间中的点映射到极坐标空间中的一条曲线来找到直线。OpenCV中的`HoughLinesP`函数实现了这一过程。参数包括: 1. `InputArray src`:输入图像,应为8位灰度图像。 2. `OutputArray lines`:输出的直线信息,是一个`vector`,每个`Vec4i`包含了两条点的坐标。 3. `double rho`:像素扫描步长,通常单位是像素。 4. `double theta`:角度步长,一般取`CV_PI/180`,即1度。 5. `int threshold`:累加器阈值,达到这个值的极坐标点被视为直线的一部分。 6. `double minLineLength`:定义了最小长度的直线,小于这个长度的线段会被忽略。 7. `double maxLineGap`:定义了最大允许的线段间隔,超过这个间隔的连续线段会被合并。 以下是一个简单的霍夫直线检测代码示例: ```cpp #include int main() { Mat src, dst; src = imread(image_line.jpg); if (src.empty()) { printf(can not load image\n); return -1; } cv::namedWindow(input, CV_WINDOW_AUTOSIZE); imshow(input, src); dst = Mat::zeros(src.size(), src.type()); cvtColor(src, dst, CV_RGB2GRAY); Canny(dst, dst, 0, 200); // 边缘检测 vector plines; HoughLinesP(dst, plines, 1, CV_PI/180.0, 150, 10, 10); for (size_t i = 0; i < plines.size(); i++) { Vec4i points = plines[i]; line(src, Point(points[0], points[1]), Point(points[2], points[3]), Scalar(0, 255, 255), 3, CV_AA); } cv::namedWindow(output, CV_WINDOW_AUTOSIZE); imshow(output, src); waitKey(); return 0; } ``` 接下来,我们讨论霍夫圆检测。霍夫圆检测同样在极坐标空间进行,但更复杂,因为它需要找到所有可能的圆心和半径。`HoughCircles`函数是专门用于检测圆形特征的。参数包括: 1. `InputArray image`:输入图像,必须是8位单通道灰度图像。 2. `OutputArray circles`:输出的圆信息,包含圆心坐标和半径。 3. `Int method`:使用的方法,例如`HOUGH_GRADIENT`。 4. `Double dp`:图像分辨率的倒数。 5. `Double mindist`:两圆心间的最小距离,用于区分相邻的圆。 6. `Double param1`:用于Canny边缘检测的高阈值,低阈值是其一半。 7. `Double param2`:中心点累加器阈值。 8. `Int minradius`:最小半径。 9. `Int maxradius`:最大半径。 以下是一个霍夫圆检测的代码示例: ```cpp #include int main() { Mat src, dst; src = imread(image_circles.jpg); if (src.empty()) { printf(can not load image\n); return -1; } cv::namedWindow(input, CV_WINDOW_AUTOSIZE); imshow(input, src); cvtColor(src, src, CV_RGB2GRAY); dst = src.clone(); cvtColor(dst, dst, CV_GRAY2RGB); // 中值滤波 medianBlur(src, src, 3); vector circles; HoughCircles(src, circles, CV_HOUGH_GRADIENT, 1.0, 100.0, 45.0, 30.0, 45.0, 220); for (size_t i = 0; i < circles.size(); ++i) { float x = circles[i][0], y = circles[i][1], r = circles[i
  • 利用EMGUCV线车道线
    优质
    本项目采用EMGUCV库实现直线车道线的实时检测,通过图像处理技术识别道路中的关键线条信息,为自动驾驶或辅助驾驶系统提供可靠的数据支持。 在计算机视觉领域里,车道线检测是一个至关重要的任务,在自动驾驶、智能交通系统以及辅助驾驶技术中有广泛应用。EMGU CV是.NET平台上的一个开源库,它基于OpenCV,并提供了C#等语言的接口以支持图像处理与算法开发。 本项目使用了EMGUCV进行直线车道线的识别工作。项目的执行流程主要包括四个步骤:预处理、特征提取、直线检测和后处理: 1. **预处理**:在对原始图片进行进一步操作前,需先通过一系列手段来降低噪音并增强图像中的关键信息(如车道标记)。这包括灰度化转换以简化色彩复杂性,并使用高斯滤波器减少噪声。EMGU CV为此提供了相应的方法接口,例如`Image.ConvertGrayScale()`用于将图片转为灰阶模式,而`Imgproc.GaussianBlur()`则用来执行模糊处理。 2. **特征提取**:为了提高直线检测的准确性,需通过突出显示车道线来加强图像中的关键信息。Canny边缘探测算法是常用的技术之一,它能够有效地识别出图像中重要的轮廓边界点。EMGU CV提供了`Imgproc.Canny()`函数用于执行此操作,并允许用户设定合适的阈值以调节边缘检测灵敏度。 3. **直线检测**:本项目采用了优化过的霍夫变换技术来实现车道线的精确探测。该算法能够从像素强度图像中识别出线条形状,EMGU CV中的`HoughLinesP()`函数即是为此目的而设计的,并允许调整参数如累加器阈值、最小线段长度以及最大间隔距离以适应各种环境条件。 4. **后处理**:检测到的直线可能包含不需要的数据(噪声),因此需要进行后期清理。这通常涉及筛选、合并及去除冗余等步骤,确保最终输出结果既连续又符合真实道路状况。例如,可以采用聚类算法如DBSCAN对线段分组,并根据角度或长度属性来过滤掉不合适的线条。 在实际操作过程中,提高车道识别的稳定性还需要考虑以下因素: - **光照变化**:通过调整预处理策略(比如曝光补偿或是自适应阈值)以应对不同的光线条件。 - **曲线道路情况**:面对非直线的道路时可能需要引入更复杂的模型如多项式拟合或贝塞尔曲线等技术来解决识别问题。 - **遮挡与混淆情形**:对于部分被阻挡的车道线或者与其他物体混杂的情况,可以结合深度学习或其他高级算法来进行处理。 - **实时性能优化**:为了保证在实际使用场景中的快速响应能力,在编写代码时需要对计算复杂度和内存消耗进行优化。 项目提供的源码及文档将详细展示如何运用EMGU CV库完成上述步骤,并且会给出一些C#环境下的实例演示。这为那些希望深入研究计算机视觉技术或自动驾驶领域的开发者们提供了一个宝贵的实践案例。