本研究提出了一种基于稀疏贝叶斯学习的算法,用于解决信号源相互耦合时的方向到达(DOA)精确估计问题,提升了复杂环境下的信号处理能力。
稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)是一种对方向到达估计(Direction of Arrival, DOA)问题产生新的研究兴趣的方法,在无线通信、雷达、声纳等多个领域具有重要的应用价值,其目的是从接收到的信号中估计出信号源的方向。SBL方法通常假设测量矩阵是精确已知的;然而在实际操作环境中,由于未知或未正确指定的互耦合(mutual coupling),造成了测量矩阵不完美,这一前提可能不再适用。互耦合作用于阵列中的各个天线单元之间,并影响其性能,在高密度天线阵列中尤为显著。
本研究提出了一种改进后的SBL方法,用以同时估计DOA和互耦合系数。该方法采用了具有层次结构的Student t先验(Student t prior),以此来更严格地强制未知信号稀疏性,并通过为期望最大化(Expectation-Maximization, EM)算法提供独特的贝叶斯推断方式,从而更加高效地更新互耦合系数。与现有仅使用静态先验的方法相比,该方法侧重于改善未知信号的稀疏度,提高了估计性能;同时利用额外的奇异值分解(Singular Value Decomposition, SVD),降低了信号重构过程中的计算复杂性和对测量噪声的敏感性。
研究发表在《Sensors》期刊上,并通过了严格的同行评审。文章作者包括Jisheng Dai、Nan Hu、Weichao Xu和Chunqi Chang,他们分别来自江苏大学、东南大学及苏州大学电子与信息工程学院;论文得到了学术编辑Vittorio M. N. Passaro的指导。
关键词涵盖了稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)、方向到达估计(Direction of Arrival, DOA)和均匀线阵列(Uniform Linear Array, ULA),以及互耦合。这些词汇概述了该研究的核心内容与关注点。
文章讨论了多路径环境中DOA的估算问题,其中信号在抵达接收端前经历多次反射、折射或散射。这种环境下准确估计DOA尤为重要;文中提到一种常见的天线阵列布局——均匀线性阵列(ULA),其特征是沿直线等距排列的天线单元,这有助于提高对方向特性的敏感度。
互耦合的存在会显著影响到DOA估算的准确性,因为它改变了接收到信号的特点。为了应对这一挑战,本研究结合了SBL技术和SVD,并引入层次化的Student t先验来增强稀疏性模型的支持能力;同时通过贝叶斯推断改进EM算法,在更新互耦合系数方面提高了效率。
尽管该方法具有创新性和优势,但在实际应用中仍面临一些困难和挑战。例如需要准确获取阵列天线的物理参数、处理复杂的信号环境以及在不同噪声水平下保持稳定的估计性能等,这些问题需进一步研究与验证解决。