
利用混沌分形法求解非线性方程组(2009年)
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本文提出了一种基于混沌与分形理论的方法来解决非线性方程组问题。该方法有效利用了混沌系统的遍历性和初值敏感性,结合分形几何特性,能够高效寻找到复杂非线性系统中的解。研究为非线性科学计算提供了新的视角和工具。
混沌分形是动力系统普遍出现的一种现象。牛顿-拉夫森(Newton-Raphson, NR)方法是一维及多维迭代技术的重要手段,其对初始点非常敏感。这种敏感性导致了由牛顿-拉夫森法构成的非线性离散动力系统的Julia集,在该集中会显示出混沌分形现象。本段落提出了一种寻找牛顿-拉夫森函数中Julia点的方法,并利用在Julia集中出现的混沌分形特性,开发出一种新的基于牛顿-拉夫森法求解非线性方程组的技术。通过计算实例验证了该方法的有效性和正确性。
全部评论 (0)
还没有任何评论哟~


