Advertisement

利用混沌分形法求解非线性方程组(2009年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文提出了一种基于混沌与分形理论的方法来解决非线性方程组问题。该方法有效利用了混沌系统的遍历性和初值敏感性,结合分形几何特性,能够高效寻找到复杂非线性系统中的解。研究为非线性科学计算提供了新的视角和工具。 混沌分形是动力系统普遍出现的一种现象。牛顿-拉夫森(Newton-Raphson, NR)方法是一维及多维迭代技术的重要手段,其对初始点非常敏感。这种敏感性导致了由牛顿-拉夫森法构成的非线性离散动力系统的Julia集,在该集中会显示出混沌分形现象。本段落提出了一种寻找牛顿-拉夫森函数中Julia点的方法,并利用在Julia集中出现的混沌分形特性,开发出一种新的基于牛顿-拉夫森法求解非线性方程组的技术。通过计算实例验证了该方法的有效性和正确性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线2009
    优质
    本文提出了一种基于混沌与分形理论的方法来解决非线性方程组问题。该方法有效利用了混沌系统的遍历性和初值敏感性,结合分形几何特性,能够高效寻找到复杂非线性系统中的解。研究为非线性科学计算提供了新的视角和工具。 混沌分形是动力系统普遍出现的一种现象。牛顿-拉夫森(Newton-Raphson, NR)方法是一维及多维迭代技术的重要手段,其对初始点非常敏感。这种敏感性导致了由牛顿-拉夫森法构成的非线性离散动力系统的Julia集,在该集中会显示出混沌分形现象。本段落提出了一种寻找牛顿-拉夫森函数中Julia点的方法,并利用在Julia集中出现的混沌分形特性,开发出一种新的基于牛顿-拉夫森法求解非线性方程组的技术。通过计算实例验证了该方法的有效性和正确性。
  • MATLAB线序_线_数值_线_MATLAB_线
    优质
    本文探讨了使用MATLAB软件解决非线性方程组的有效方法和编程技巧,涵盖了线性方程与数值解法的理论基础。 MATLAB编程提供了多种求解非线性方程和方程组的方法。
  • MATLAB线
    优质
    本文章介绍了如何使用MATLAB软件高效地求解复杂的非线性方程组问题,涵盖了多种数值方法和实例应用。 在MATLAB中求解非线性方程组的代码可以使用多种方法,包括不动点迭代法、牛顿法、离散牛顿法、牛顿-雅可比迭代法、牛顿-SOR迭代法、牛顿下山法以及两点割线法和拟牛顿法等。这些方法可用于求解非线性方程组的一个根。
  • Crout 线
    优质
    本文章介绍了Crout分解法在求解线性方程组中的应用。通过将系数矩阵分解为下三角矩阵和上三角矩阵的乘积,简化了计算过程并提高了效率。 这是数值计算第二章的第五个程序——Crout 分解法解线性方程组。
  • MATLAB线的根的
    优质
    本篇文章将详细介绍如何使用MATLAB软件求解复杂的非线性方程组,并探讨各种实用方法和技巧,帮助读者掌握高效准确地找到方程组的数值解。 在MATLAB中可以通过三种不同的方法来求解非线性方程组的根。
  • MATLAB的牛顿线
    优质
    本文章介绍了如何使用MATLAB软件实现牛顿迭代法解决复杂的非线性方程组问题,并提供了详细的编程步骤和示例代码。 MATLAB牛顿法求解非线性方程组的部分源码如下: ```matlab function Newton() x0 = [0.1; 0.5]; x1 = x0 - inv(myJacobi(x0)) * myfun(x0); while norm(x1-x0) > 1e-3 x0 = x1; x1 = x0 - inv(myJacobi(x0)) * myfun(x0); end x1 ``` 这段代码定义了一个名为`Newton`的函数,使用牛顿法求解非线性方程组。初始值为`x0=[0.1; 0.5]`,迭代更新直至满足误差条件为止。
  • 牛顿迭代线
    优质
    本研究探讨了应用牛顿迭代算法解决复杂的非线性方程组问题,通过优化迭代过程提高了计算效率和精度。 牛顿迭代法求非线性方程组的C++源代码可供大家参考。
  • 三角线
    优质
    本文介绍了如何使用三角分解法(如LU分解)来高效地解决线性方程组问题。通过将复杂矩阵简化为更易处理的形式,该方法大大提高了计算效率和数值稳定性,在工程与科学计算中广泛应用。 三角分解法解线性方程组包括公式说明、例题解析以及在MATLAB软件上的源程序实现。
  • MATLAB线的十余种
    优质
    本书详细介绍了使用MATLAB软件求解非线性方程组的多种算法和技巧,涵盖十余种实用方法,适合科研人员与工程技术人员参考学习。 mulStablePoint 使用不动点迭代法求解非线性方程组的一个根。 mulNewton 采用牛顿法求解非线性方程组的一个根。 mulDiscNewton 利用离散牛顿法求解非线性方程组的一个根。 mulMix 运用牛顿-雅可比迭代法求解非线性方程组的一个根。 mulNewtonSOR 使用牛顿-SOR迭代法求解非线性方程组的一个根。 mulDNewton 通过牛顿下山法求解非线性方程组的一个根。 mulGXF1 应用两点割线法的第一种形式求解非线性方程组的一个根。 mulGXF2 使用两点割线法的第二种形式求解非线性方程组的一个根。 mulVNewton 利用拟牛顿法求解非线性方程组的一组解。 mulRank1 采用对称秩1算法求解非线性方程组的一个根。 mulDFP 使用D-F-P算法求解非线性方程组的一组解。 mulBFS 运用B-F-S算法求解非线性方程组的一个根。 mulNumYT 利用数值延拓法求解非线性方程组的一组解。 DiffParam1 通过参数微分法中的欧拉法求解非线性方程组的一组解。 DiffParam2 使用参数微分法中的中点积分法求解非线性方程组的一组解。 mulFastDown 利用最速下降法求解非线性方程组的一组解。 mulGSND 采用高斯牛顿法求解非线性方程组的一组解。 mulConj 使用共轭梯度法求解非线性方程组的一组解。 mulDamp 利用阻尼最小二乘法求解非线性方程组的一组解。
  • 基于BFGS算的强单调对称线*(2009)
    优质
    本文提出了一种改进的Broyden-Fletcher-Goldfarb-Shanno (BFGS) 算法,专门用于高效解决具有强单调性和对称性的非线性方程组问题。通过理论分析与实验验证,展示了该算法在求解此类特定结构方程组方面的优越性能和广泛适用性。 本段落提出了一种求解强单调非线性方程组的BFGS算法。该算法的一个显著优点是其Hessian矩阵近似值$B_k$的条件数比Li-Fukushima提出的GNBFGS中的相应矩阵小得多,且无需计算导数值即可实现下降。在满足一定条件下,证明了该算法具备全局收敛性和超线性收敛性的特点。通过进行一系列数值试验后发现,本段落所提算法具有良好的性能,并验证了$B_k$的条件数确实小于GNBFGS中的矩阵条件数。