Advertisement

IMU相机的相对姿态标定方法及其应用.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文档探讨了一种针对IMU与相机系统中相对姿态进行精确标定的方法,并分析了该技术在不同应用场景中的优势和实现效果。 MU-Camera相对位姿标定及应用是指将惯性测量单元(IMU, Inertial Measurement Unit)刚性地安装在相机上,以确定IMU坐标系与Camera坐标系之间的姿态关系。这种方法利用IMU提供的数据来实现电子稳像。 论文作者田颖的研究表明,传统的电子稳像技术主要依赖于图像的灰度信息计算两帧间的运动矢量,从而感知相机的姿态变化。然而,在光照变化、物体遮挡或色调差异的情况下,这种方法可能会遇到特征提取困难甚至无法准确识别的问题。为解决这些问题,田颖提出了一种新的不依赖于图像特征匹配的电子稳像方法。 该方法首先通过分析IMU三轴加速度数据,并结合世界坐标系与相机坐标系之间的旋转关系进行相对位姿标定。这里使用四元数来表示和计算两个坐标系间的旋转关系,因为四元数可以避免欧拉角或旋转矩阵在连续旋转时可能出现的万向节死锁问题。 完成标定后,下一步是实现IMU与相机的时间同步,确保两者在同一时刻获取数据。这样,在IMU监测到相机运动变化的同时,能够准确反映其实际位置的变化,因为它们处于同一坐标系统下。 通过IMU提供的旋转矩阵可以推导出两帧图像之间的单应性关系,并利用这个关系进行逆映射以校正图像,从而达到稳定效果。 田颖的研究对比了多种场景中当前流行算法与新提出的IMU-Camera标定电子稳像方法的性能。实验结果显示,在光照变化、遮挡等复杂环境下,基于IMU-Camera标定的方法能更好地克服这些挑战,并展现出更高的稳健性和更广泛的应用潜力。 MU-Camera相对位姿标定是传感器融合领域的重要研究方向之一,有助于提高无人机、无人驾驶车辆及运动相机等领域中图像稳定性和导航精度。通过不依赖于特征匹配的电子稳像方法,可以增强系统在复杂环境中的适应能力,并为实时视觉处理和图像稳定性提供了一种新的解决方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • IMU姿.pdf
    优质
    本文档探讨了一种针对IMU与相机系统中相对姿态进行精确标定的方法,并分析了该技术在不同应用场景中的优势和实现效果。 MU-Camera相对位姿标定及应用是指将惯性测量单元(IMU, Inertial Measurement Unit)刚性地安装在相机上,以确定IMU坐标系与Camera坐标系之间的姿态关系。这种方法利用IMU提供的数据来实现电子稳像。 论文作者田颖的研究表明,传统的电子稳像技术主要依赖于图像的灰度信息计算两帧间的运动矢量,从而感知相机的姿态变化。然而,在光照变化、物体遮挡或色调差异的情况下,这种方法可能会遇到特征提取困难甚至无法准确识别的问题。为解决这些问题,田颖提出了一种新的不依赖于图像特征匹配的电子稳像方法。 该方法首先通过分析IMU三轴加速度数据,并结合世界坐标系与相机坐标系之间的旋转关系进行相对位姿标定。这里使用四元数来表示和计算两个坐标系间的旋转关系,因为四元数可以避免欧拉角或旋转矩阵在连续旋转时可能出现的万向节死锁问题。 完成标定后,下一步是实现IMU与相机的时间同步,确保两者在同一时刻获取数据。这样,在IMU监测到相机运动变化的同时,能够准确反映其实际位置的变化,因为它们处于同一坐标系统下。 通过IMU提供的旋转矩阵可以推导出两帧图像之间的单应性关系,并利用这个关系进行逆映射以校正图像,从而达到稳定效果。 田颖的研究对比了多种场景中当前流行算法与新提出的IMU-Camera标定电子稳像方法的性能。实验结果显示,在光照变化、遮挡等复杂环境下,基于IMU-Camera标定的方法能更好地克服这些挑战,并展现出更高的稳健性和更广泛的应用潜力。 MU-Camera相对位姿标定是传感器融合领域的重要研究方向之一,有助于提高无人机、无人驾驶车辆及运动相机等领域中图像稳定性和导航精度。通过不依赖于特征匹配的电子稳像方法,可以增强系统在复杂环境中的适应能力,并为实时视觉处理和图像稳定性提供了一种新的解决方案。
  • IMU.pdf
    优质
    本文档《相机与IMU标定》探讨了如何精确地校准相机和惯性测量单元(IMU)以提高传感器融合系统的性能,适用于机器人视觉、自动驾驶等领域。 IMU与相机联合标定工具Kalibr的安装、配置以及使用过程中的一些注意事项和步骤如下: 1. **Kalibr 安装** Kalibr是一个用于多传感器系统校准(包括IMU和摄像头)的强大工具,支持从基础设置到复杂系统的各种应用。首先需要下载并正确安装Kalibr软件包。 2. **Kalibr 配置** 在进行标定之前,确保所有的硬件设备都已连接好,并且根据具体需求配置相应的参数选项。这包括设定IMU和相机的类型、分辨率等基本信息。 3. **标定注意事项** - 确保采集的数据具有足够的多样性以覆盖所有可能的工作场景。 - 在进行标定时保持环境光线稳定,避免强光直射或者阴影变化频繁的情况影响结果准确性。 - 定期检查硬件连接是否正常以及软件运行状态。 4. **标定步骤** 具体的标定流程会根据所使用的传感器类型而有所不同。一般而言,首先需要进行单独的IMU和相机内部参数校准;然后是两者之间的外部姿态关系确定等环节。 5. **结果判断** 完成所有必要的标定过程之后,需要仔细分析所得出的数据以评估其准确性和可靠性。可以通过对比理论值与实际测量结果来验证是否达到了预期的目标精度要求。 以上就是使用Kalibr工具进行IMU和相机联合标定时的一些基本指导信息。
  • MATLAB源码-relative_pose: 姿估计算集合
    优质
    本项目提供多种算法实现MATLAB环境下的相机相对位姿估计,适用于研究与开发需求,促进计算机视觉领域技术进步。 该存储库包含用于校准相机相对位姿估计的算法集合,并使用C++和Matlab API实现。其中包括以下求解器: - 传统的五点算法(5P),基于Hartley的经典实现。 - 四点算法(4P-RA):已知旋转角度的情况下进行姿态估算。 - 在平面运动且未知平面方向时的四点算法 (4P-ST0): - 具有已知旋转角度并在不知道平面方向下的三步法(3P-RA-ST0),适用于在特定约束条件下工作。 与其他相对位姿估计算法相比,这些方法(即 4P-RA、4P-ST0 和 3P-RA-ST0)利用了额外的传感器/运动限制条件,并且不需要外部校准。这得益于 SE(3) 不变量的独特特性。该存储库是以下论文的源代码: Li, Bo and Martyushev, Evgeniy and Lee, Gim Hee. Relative Pose Estimation of Calibrated Cameras with Known SE(3) Invariants. ECCV.
  • OpenCV姿更新
    优质
    简介:本文介绍了一种基于OpenCV库的相机姿态实时更新方法,通过优化算法提高姿态估计准确性与稳定性,适用于各种计算机视觉应用场景。 使用OpenCV中的solvePnP函数可以计算相机姿态(包括旋转和平移)。
  • 单目和双目IMU联合技术
    优质
    本文探讨了单目与双目相机结合惯性测量单元(IMU)的联合标定技术及其应用方法,旨在提高系统的精度和鲁棒性。 在当今科技迅速发展的背景下,图像处理与计算机视觉领域已成为研究热点之一。其中,单目及双目相机系统结合惯性测量单元(IMU)的联合标定技术是实现精确视觉定位与导航的关键手段。该技术涵盖机器视觉、传感器融合和信号处理等多学科知识。 单目相机系统仅使用一个摄像头获取图像信息,用于确定物体在图像平面上的位置。由于缺乏深度信息,这种系统的距离测量能力有限。相比之下,双目相机通过两个摄像头捕捉同一场景,并利用视角差异计算物体的深度信息,从而重建三维空间结构。 IMU(惯性测量单元)结合了加速度计和陀螺仪等传感器,提供关于运动状态的信息,包括速度、位置、加速度及角速度。它在导航定位与机器人控制中应用广泛。 当单目或双目相机系统与IMU整合时,可以利用视觉信息和动态数据进行融合处理,实现更精确的三维空间定位和姿态估计。这种技术涉及复杂的校准过程,包括内部参数标定、几何关系确定及外部参数计算等步骤。 在联合标定时,研究者首先需单独对单目或双目相机完成内部标定以获取焦距与畸变系数等信息,并确保双目系统基线长度和极线正确。接着通过图像特征与IMU数据估算两者相对位置和姿态关系,使其同步工作。 整个过程中,算法选择、特征点提取、误差点剔除及精度评估等因素会影响最终标定效果。实验需在多种环境条件下进行以保证参数的通用性,并且实时性和鲁棒性也是评价系统性能的重要标准。 完成联合标定后,通过获得的相关参数可以融合相机图像信息和IMU数据实现更准确的空间定位与姿态估计,广泛应用于自动驾驶汽车、无人机、增强现实等众多领域。这项技术集成了多学科知识和技术,要求深入理解相机工作原理及IMU特性,并掌握先进的数据处理与融合算法以适应复杂环境并提供高效导航服务。
  • OpenCV
    优质
    本简介介绍了一种使用开源计算机视觉库OpenCV进行相机标定的方法,旨在提高图像处理和机器视觉应用中的精度与可靠性。 使用OpenCV进行相机标定,并对主要接口进行了封装,只需更改文件位置即可。支持棋盘格、圆形点以及实时相机标定功能。
  • 单帧图像函数
    优质
    简介:本文提出了一种基于单帧图像的相机响应函数标定新方法。通过分析图像数据,无需复杂的硬件设备即可快速准确地获取相机的响应曲线,为图像处理和计算机视觉应用提供技术支持。 高动态范围成像技术能够避免因拍摄方向如逆光以及曝光量不同导致的图像亮度信息缺失和色差问题,从而确保真实场景的信息采集质量。该技术在复杂环境下能显著提升成像效果,并被广泛应用于模式识别、智能交通系统、遥感遥测及军事侦察等领域。 相机响应函数的标定是高动态范围成像技术的核心环节之一,它能够建立真实场景中的辐照度与所拍摄图像亮度值之间的映射关系。通过这一过程可以获取到反映实际环境的真实高动态范围图像。此外,文中提出了一种算法,可以通过单一帧输入图象来确定相机的响应函数,从而显著提高了计算效率,并且适用于欠曝光和过曝情况下的影像采集,进一步扩大了该类标定方法的应用领域。
  • TOOLBOX_calib.zip_matlab单目_单目_
    优质
    本资源提供MATLAB环境下单个和多个相机的标定工具箱(TOOLBOX_calib.zip),包括详细的单目相机内参数与外参计算,适用于视觉测量和图像处理。 基于Matlab开发的源码实现了相机单目标定和多目标定功能,能够自动生成相机的内参和外参。
  • IMU与GPS融合姿解算
    优质
    本研究探讨了惯性测量单元(IMU)与全球定位系统(GPS)的数据融合技术及其在姿态解算中的应用,旨在提高导航系统的精度和稳定性。 IMU(惯性测量单元)与GPS(全球定位系统)在无人驾驶中的融合旨在提高车辆的定位精度和可靠性。IMU通过陀螺仪和加速度计来测量物体的加速度和角速度,进而计算出位移、速度及姿态信息;而GPS则利用卫星信号确定位置。 实现这两种传感器的数据融合需要采用多传感器数据融合技术和位姿解算算法。通常包括以下步骤:预处理(滤波)、关联匹配、状态估计以及更新修正等环节。在无人驾驶系统中,预处理主要是对IMU和GPS的测量值进行去噪;而关联则是将二者对应起来以供后续使用。 常用的数据融合方法有卡尔曼滤波器、粒子滤波器及扩展卡尔曼滤波器等技术。其中,卡尔曼滤波器能有效结合高频率但误差累积较快的IMU数据和低频次却相对准确的GPS信息,从而提供更稳定可靠的位姿估计。 位姿解算涉及根据传感器的数据确定无人驾驶车辆的位置、方向以及姿态角度(滚转角、俯仰角及偏航角)。尽管IMU可估算运动状态但长期运行后会累积误差;而当GPS信号不佳时其定位精度也会下降。因此,融合两者数据可以互补各自的不足之处。 在进行数据融合之前还需解决坐标系差异的问题:通常情况下,IMU采用机体坐标系(body frame),而GPS使用地心固定坐标系(ECEF frame)。为了使二者兼容,在处理前需要将IMU的数据转换到与GPS相同的参考框架内。这一步骤涉及地球模型和姿态矩阵的计算。 另外,由于长时间运行后会累积误差,所以应定期利用GPS信息校准IMU参数以确保准确性。通过这种方式可以实现更精确的姿态解算结果。 实践中还需要注意解决数据同步问题——保证两个传感器在相同时间点获取的数据才能准确融合。否则直接合并会导致定位偏差。 总之,在无人驾驶领域中结合使用IMU和GPS是一个复杂的过程,需要借助先进的多源信息整合技术及位姿计算方法来实现精准的车辆导航与控制功能。
  • 兼顾测角和位误差姿估计
    优质
    本研究提出了一种创新性的相机姿态估计方法,能够同时校正测角与定位误差,显著提升姿态估计精度。适用于机器人视觉、自动驾驶等领域。 在需要同时考虑测角误差与定位误差对精度影响的高精度场景下,提出了一种新的相机姿态估计算法。该算法改进了传统的最小二乘平差方法,在迭代过程中将定位误差的协方差投影到单位球面上,并将其与角度测量中的误差协方差进行融合。为了处理在投影过程依赖于待估计参数的问题,采用了块松弛迭代的方法。通过使用合并后的协方差作为权重来构建加权最小二乘平差方程,从而得出当前迭代状态下的相机姿态估计值。 这种方法将位置测量的误差模型与角度测量中的误差模型统一起来,在导弹发射车定向系统等应用场景中表现出良好的适用性,并且实验结果证明了其有效性。