Advertisement

Tensorflow中实现的人体深度学习表面缺陷检测方法,采用分割技术。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该研究成果展示了针对秒杀DeepLabV3和Unet缺陷检测网络的Tensorflow实现,并采用了基于分割的深度学习方法进行表面缺陷检测。该方法于2019年发表在CVPR会议上。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Python使TensorFlow基于
    优质
    本研究提出了一种利用Python与TensorFlow框架结合的方法,实施基于分割技术的深度学习算法,专门用于自动化检测物体表面缺陷。该方法通过高效的图像处理和机器学习模型训练,能够准确识别并分类各种类型的制造瑕疵,从而提高产品质量控制效率,并降低人工检查成本。 基于分割的深度学习表面缺陷检测方法(CVPR 2019)的一个TensorFlow实现,旨在克服DeepLabV3和Unet在缺陷检测方面的不足。
  • Python-Tensorflow驱动.rar
    优质
    本资源为基于Python和TensorFlow开发的表面缺陷自动检测系统,采用深度学习技术进行图像分割以识别物体表面的各种瑕疵。 基于TensorFlow的一个案例实现,在实际生产环境中用于瑕疵检测。该系统适用于布匹、木材、金属、塑料和薄膜等多种产品表面的瑕疵及斑点检测,并取得了较好的效果。
  • 基于DL
    优质
    本研究探讨了基于深度学习分割技术在表面缺陷检测领域的应用与实施,旨在提升工业产品质量控制的精确性和效率。 1. 使用PyTorch实现的代码,支持GPU运行(也可在CPU上运行,但可能会出现内存不足的问题);2. 包括KolektorSDD电子转换器表面裂痕的数据集图片、论文原文及训练好的模型文件(由于模型大小超过1G,无法上传至资源平台。若有需要请留言告知,我将尽快找到并分享到网盘)。3. 关于此资源的具体介绍,请参考我的相关文章。
  • 基于车辆零部件.pdf
    优质
    本文探讨了一种创新的车辆零部件缺陷检测方法,利用深度学习技术提升检测精度与效率。该研究为汽车行业质量控制提供了新的解决方案。 在介绍基于深度学习的车辆零件缺陷检测方法时,首先需要了解图像处理与分析领域中的应用背景和技术进展。深度学习是一种通过多层神经网络来自动从数据中提取表征信息的技术,而卷积神经网络(Convolutional Neural Network, CNN)则是其中最为有效的模型之一。CNN能够自动地从图片中抽取特征,并进行分类。 该方法所涉及的主要技术包括VGGNet和InceptionV3两种深度卷积神经网络结构,在图像识别领域表现突出。VGGNet由牛津大学视觉几何小组提出,其特点是使用了较小的卷积核(如3×3)与池化核(2×2),这使得模型在参数量减少的同时保持较高的性能。通常情况下,一个典型的VGG16结构包含五段卷积层和三段全连接层,在每一段中都包含了多个连续的卷积操作,并且随着层数增加,使用的滤波器数量也逐渐增大。 InceptionV3则是由Google提出的一种新型CNN架构,它采用了“inception模块”,该模块可以灵活地适应不同大小与位置的重点区域问题。通过在同一个结构内使用多种尺寸(如1×1, 3×3, 5×5)的卷积核和池化操作,InceptionV3能够在捕捉更多空间信息的同时保持网络效率。 文中提出了一种名为SF-VGG的新模型用于车辆零件缺陷检测,该模型基于简化改进后的VGGNet,并融合了部分来自InceptionV3的设计理念。通过引入额外的特征融合层来增强模型的表现力。实验表明,在自定义数据集及模糊图像测试中,SF-VGG均表现出良好的准确率和性能。 此外,文中还提到了几种其他技术手段应用于零件缺陷检测的例子:包括基于BP神经网络构建的机器视觉在线自动检测系统、采用SURF特征算法进行动车车辆底部缺陷识别的方法以及利用激光与CCD测量技术来检查球体表面瑕疵的技术。这些研究展示了多种不同方法在该领域内的应用潜力。 随着深度学习技术在图像处理及目标检测等领域的快速发展,其在未来车辆零件缺陷检测中的应用前景非常广阔。通过持续优化模型结构并结合实际生产需求,深度学习有望进一步提升此类任务的效率与精度。
  • 贴装
    优质
    简介:表面贴装技术(SMT)在电子制造业中广泛应用,其缺陷检测对于确保产品质量和可靠性至关重要。本研究聚焦于识别并解决SMT过程中的常见问题与挑战,提升制造精度及效率。 在SMT工艺中,自动光学检测系统AOI采用基于SIFT的视觉检测技术。
  • 基于热轧带钢自动化.zip
    优质
    本研究提出了一种基于深度学习技术的热轧带钢表面缺陷自动化检测方案,旨在提高检测精度与效率。该方法通过分析大量带钢表面图像数据,自动识别并分类各种常见缺陷类型。 深度学习在热轧带钢表面缺陷自动检测技术中的应用已成为现代工业生产不可或缺的一部分,它显著提升了产品质量控制的效率与准确性。作为众多制造业的基础材料,热轧带钢的质量直接影响到最终产品的性能和使用寿命。传统的手动检查方法耗时且容易出错,而基于深度学习的技术通过自动化手段解决了这些问题。 深度学习是机器学习的一个分支领域,模仿人脑神经网络的工作方式,并利用大量数据训练模型以进行复杂的模式识别任务。在热轧带钢表面缺陷检测中,卷积神经网络(CNN)被广泛使用来处理图像数据。由于其强大的特征提取能力,CNN能够从图像中辨识出细微的纹理、形状和颜色变化等关键信息。 为了构建有效的深度学习模型,需要准备大量包含不同类型的表面缺陷以及无缺陷样本的热轧带钢图像作为训练集。这些可能包括裂纹、氧化皮、夹杂及划痕等多种类型。数据预处理阶段涉及对图像进行增强操作(如旋转、缩放和裁剪),以提高模型泛化能力,并且需要标记每个图像中的缺陷位置与类别。 接下来是构建深度学习架构,常用的选择有AlexNet、VGG、ResNet以及Inception等系列,它们在图像识别任务中表现出色。这些网络通常由卷积层、池化层和全连接层组成,并利用激活函数进行非线性变换。通过反向传播算法及优化器(如Adam或SGD)对模型参数进行调整直至达到最优性能。 训练完成后,该检测系统能够实时处理新热轧带钢图像并输出缺陷的置信度与位置信息。当发现超过预设阈值的问题时,将自动触发警报,并可能启动进一步检查或修复程序。 除了CNN之外,YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等目标检测模型也可以用于定位及分类热轧带钢表面的多种缺陷区域。这些算法能够快速准确地识别出多个潜在问题区域的位置与属性信息。 在实际应用过程中,还需考虑系统的实时性和稳定性等因素。这可能涉及使用GPU加速计算、设计并行处理流程以及流式数据处理架构等策略来优化整体性能表现。此外,定期更新和维护模型也是确保其长期有效性的关键步骤之一。 总而言之,基于深度学习的热轧带钢表面缺陷自动检测技术利用先进的机器学习算法分析图像信息,实现了高效且精确的质量监控目标,并大幅降低了人工检查成本、提高了生产效率与产品质量水平。随着相关领域的持续进步与发展,未来有望看到更多创新应用出现并进一步推动工业生产的智能化进程。
  • Halcon类、目标和
    优质
    本教程深入介绍在Halcon软件中运用深度学习技术进行图像分类、目标识别及缺陷检测的方法与实践,助力工业自动化领域应用。 在机器视觉领域,HALCON是一款广泛应用的工业图像处理软件,其强大的功能涵盖了各种任务如形状匹配、模板匹配以及1D2D码识别等。随着深度学习技术的应用,HALCON在缺陷检测、分类及目标检测等方面的能力得到了显著提升。 首先来看“分类”这一概念。借助于深度学习框架,HALCON可以训练自定义的图像分类模型来识别和区分不同的物体类别。用户可以通过提供大量带有标签的数据集进行模型训练,并通过优化网络结构(如卷积神经网络CNN)以及调整超参数等步骤提高其性能。 接下来是“目标检测”。不同于单纯的分类任务,目标检测需要定位出每个物体的具体位置信息。HALCON支持创建自定义的目标检测模型,例如YOLO和SSD算法,在单张图片中同时识别多个对象并给出边界框。这项技术在制造业的生产线监控以及自动驾驶领域有着广泛的应用。 再来看看“缺陷检测”,这是制造过程中一个关键环节。通过深度学习方法训练出专门用于区分正常产品与存在瑕疵产品的模型,能够帮助提高生产效率和产品质量控制水平。这一过程涉及异常模式识别、图像对比分析及阈值设定等操作技术。 在HALCON中实现深度学习应用通常包含以下几个步骤: 1. 数据准备阶段:收集并标注大量样本数据; 2. 模型选择与设计:根据具体任务需求挑选合适的网络架构,如卷积神经网络或全连接层结构; 3. 训练及验证环节:使用内置工具进行模型训练,并通过交叉验证确保其泛化性能; 4. 超参数调优:优化学习速率、批量大小等关键变量以改善训练效果; 5. 部署与应用阶段:将经过充分测试的模型集成到实际系统中,用于实时图像分析及决策支持。 总结而言,HALCON利用深度学习技术在缺陷检测、分类和目标识别等方面展示了卓越的表现力,并为自动化生产线的质量监控提供了强有力的工具。无论是初学者还是资深工程师都能从中受益匪浅。
  • 小样本语义网络
    优质
    本研究提出了一种针对小样本数据集的高效表面缺陷检测技术,采用先进的语义分割网络模型,有效提升工业品质检精度与效率。 传统工业产品表面缺陷检测主要依赖人工肉眼识别,这显著降低了生产效率,并在一定程度上限制了社会生产力的发展。为了提高检测效果并减少人工成本,本段落提出了一种基于语义分割网络UNet的小样本表面缺陷检测方法,在原有的UNet基础上进行了两方面的改进:一是加入了BN层;二是将残差网络与UNet结合在一起。此外,在下采样过程中引入了不同数量的残差块(3、5和7个),并对这些配置的效果进行了实验验证。 结果显示,通过在UNet中加入BN层可以提高分割检测效果,而进一步添加残差块则能够显著提升缺陷识别性能。
  • 基于齿轮微小视觉
    优质
    本研究利用深度学习技术开发了一种高效的齿轮微小缺陷视觉检测系统,旨在提高工业生产中的质量控制效率和精度。 针对齿轮视觉微小缺陷的检测问题,采用了一种基于深度学习算法的Mask R-CNN网络,并对该网络进行了相应的优化调整。首先通过比较5种残差神经网络的效果,选择了resnet-101作为图像共享特征提取网络。接着剔除了特征金子塔网络中对特征图P5进行的不合理3×3卷积操作,从而使缺齿检出率得到提升。为了有效训练候选区域网络(RPN),根据设计的样本标注方案中的小范围尺寸波动情况,设置了合适的anchors大小及宽高比。最终优化后的Mask R-CNN网络达到了98.2%的缺齿检出率。