Advertisement

该代码利用MATLAB实现无监督多核学习,用于数据降维。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
数据融合MATLAB代码,采用无监督多核学习(U-MKL)技术,旨在降低数据的维度。这种方法是基于Lin等人提出的有监督多核学习(MKL)技术的实现。它巧妙地整合了基于特征的内核,能够最大限度地融合来自不同来源的异构信息,并对每个输入贡献进行精确的加权处理。U-MKL能够处理各种异构描述符,并将其复杂性简化为更简洁、低维度的表示形式,从而有效地突显了原始输入数据中最重要的特征。有关更多信息,请参考Sanchez-Martinez等人发表的文章。相关研究报告可能会引用林Y.刘T.和C.Fuh在IEEETransactionsonPatternAnalysisandMachineIntelligence上发表的文章,该文章详细描述了用于降维的多核学习方法。该方法主要用于减少数据的维度。该论文发表于2011年,文章编号为33:1147–1160。当前的MATLAB实现可以在S.Sanchez-Martinez等人在医学图像分析上发表的文章中找到更详尽的说明,该文章探讨了通过无监督的多核学习来表征心肌运动模式,发表于2017年,文章编号为35:70-82。数据库合成的左...

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Matlab中的融合-:适的...
    优质
    本项目提供了一套基于Matlab的数据融合代码,专注于无监督多核学习技术,特别适合于复杂数据分析过程中的降维处理。 数据融合的MATLAB代码实现了无监督多核学习(U-MKL),这是一种用于降低维数的技术,基于Lin等人提出的有监督MKL方法。通过结合特征内核,它可以最佳地整合异构信息并加权每个输入对最终结果的影响。U-MKL能够处理不同类型的描述符,并将其复杂性简化为低维度的表示形式,从而突出输入数据的主要特性。有关此技术的更多信息,请参考Sanchez-Martinez等人的文章。 使用该代码(或其修改版本)发表的研究报告应引用以下文献:林Y.、刘T.和C.Fuh,《多核学习以减少维数》, IEEE Transactions on Pattern Analysis and Machine Intelligence,33: 1147-1160, 2011年。 此外,请参考S.Sanchez-Martinez等人在《医学图像分析》,第35卷:70-82页(2017)的论文,该文详细介绍了当前MATLAB实现的具体内容。
  • 赫布MATLAB
    优质
    本项目采用MATLAB语言实现了赫布学习算法在无监督学习中的应用,通过模拟神经网络的学习过程,展示了赫布规则如何增强相关输入模式之间的连接强度。 标题中的“赫布学习”指的是赫布理论(Hebbian Learning),这是早期神经网络领域的一项重要规则,由Donald Hebb在1949年提出。该理论基于一个核心原则:“一起激发的神经元会一起连接”。简单来说,如果两个神经元经常同时活跃,它们之间的联系将会增强。这一原理在机器学习中被用于模型权重初始化或简单的自组织网络设计,例如自适应共振理论(ART)和某些形式的受限玻尔兹曼机(RBM)。 “无监督学习的简单例子”意指我们将探讨一种不需要预先标记数据的学习方法。无监督学习是发现数据内在结构、进行聚类分析或降维处理的重要手段。在这种情况下,我们可能会构建一个模型来通过分析数据中的相似性和相关性识别模式。 标签“matlab”表示将使用MATLAB编程环境实现上述无监督学习的示例。作为一款广泛应用于数值计算和矩阵运算等领域的高级语言,MATLAB配备了丰富的工具箱支持机器学习与深度学习功能,使赫布学习算法的实施变得相对简单。 在文件名perceptron_test_hebb.m.zip中,“perceptron”指的是感知器模型——一种用于解决二分类问题的基本有监督学习算法。而“test”则提示这是一个测试脚本,可能用来验证赫布规则在感知器框架中的应用效果。.m扩展表示这是一款MATLAB脚本段落件。 结合这些信息,我们预计该MATLAB代码将实现一个融合了赫布学习机制的感知器模型,在无监督环境下通过自适应调整权重来从输入数据中获取知识——即便没有明确的数据标签。具体实现步骤可能包括: 1. **数据预处理**:加载并标准化数据集以确保所有特征在统一尺度上。 2. **初始化权重**:按照赫布理论,初始权值可以随机设定或者依据与特定输入的相关性进行调整。 3. **训练过程**:每次迭代时,根据当前激活状态更新连接的强度。如果两个神经元同时活跃,则相应地增加它们之间的联系强度。 4. **性能评估**:尽管是无监督学习任务,仍可通过某种度量(如距离或相似程度)来衡量模型的表现情况——这不同于传统的误差函数应用方式。 5. **聚类与分类**:经过多次迭代后形成的权重结构可用于将新数据点归入不同的群体或者类别中去。 6. **结果可视化**:最后,可能通过二维或三维图表展示聚类分析的结果,帮助理解模型所学习到的模式。 请注意,在无监督环境下的赫布学习应用与传统的有监督感知器算法有所不同。前者不依赖于错误反向传播机制来更新权重,而是依靠数据共激活模式来进行调整。通过运行并解析`perceptron_test_hebb.m`脚本段落件,我们能够更深入地了解这种特定实现方式如何在MATLAB环境下运作和学习无监督任务中的赫布规则。
  • 战入门 使Python进行
    优质
    本书为初学者提供了使用Python进行无监督学习的实用指南,通过丰富的实例讲解了如何应用聚类、降维等技术解决实际问题。 Hands-On Unsupervised Learning Using Python is a guide on how to build applied machine learning solutions from unlabeled data, authored by Ankur A. Patel.
  • 中PCA与K-means聚类处理
    优质
    本研究探讨了在无监督学习框架下,主成分分析(PCA)用于数据降维以及K-means算法进行聚类的有效性及相互作用,旨在优化大规模数据集的处理效率和模式识别能力。 无监督学习算法通常没有目标值(变量)。常见的无监督学习方法包括降维技术和聚类技术。例如: 1. 降维:主成分分析PCA。 2. 聚类:K-means。 其中,主成分分析(PCA)用于实现特征的降维: - 定义:将高维度的数据转化为低维度数据的过程,在此过程中可能会舍弃原有的一些信息并创造新的变量。 - 作用:通过压缩数据维度来降低原数据的复杂度,并尽量减少信息损失。 - 应用场景:回归分析或聚类分析中。 在Python的sklearn库中,PCA可以通过以下方式实现: - sklearn.decomposition.PCA(n_components=None) - n_components参数可以是小数或者整数。 * 小数值表示保留百分之多少的信息量; * 整数值则指明减少到多少个特征。
  • 及强化
    优质
    本课程全面介绍机器学习的核心领域,包括监督学习、无监督学习和强化学习的基本概念、算法原理及其应用实践。 监督学习、无监督学习与强化学习是机器学习的三种主要类型。监督学习涉及使用标记的数据集进行训练,以预测未来的输出;无监督学习则处理没有标签的数据,旨在发现数据中的结构或模式;而强化学习通过智能体在环境中的互动来优化策略,通常用于解决决策问题。
  • 机器践项目——聚类与PCA tSNE.zip
    优质
    本资料提供了一个基于无监督学习的实践项目,涵盖了聚类分析和PCA及t-SNE降维技术的应用。通过该项目,学习者能够掌握如何运用Python进行复杂数据集的探索性分析与可视化展示。适合对机器学习感兴趣的数据分析师和技术爱好者。 在本机器学习实战项目中,我们将探讨两种关键的无监督学习方法:聚类与主成分分析(PCA),以及t-distributed Stochastic Neighbor Embedding(t-SNE)降维技术。这些技术在数据科学领域有着广泛的应用,特别是对于理解高维数据的结构、减少计算复杂度以及可视化数据。 一、无监督学习 无监督学习是一种机器学习方法,在没有预先标记类别或目标变量的情况下对数据进行学习。这种学习方式主要用于发现数据中的内在模式、结构或者群组。在这个项目中,我们将重点研究聚类算法,它旨在将相似的数据点归为一类,而无需事先知道类别的信息。 二、聚类算法 1. K-Means聚类:K-Means是最常见的聚类算法之一,其目标是将数据分配到k个预定义的簇中,使簇内的数据点尽可能接近,而簇间的数据点尽可能远离。这个过程通过迭代调整簇中心和数据点的归属来实现。 2. DBSCAN(Density-Based Spatial Clustering of Applications with Noise):DBSCAN是一种基于密度的聚类方法,它可以发现任意形状的簇,并且能自动处理噪声点。它通过计算每个数据点的邻域密度来划分簇。 三、主成分分析(PCA) PCA是一种线性降维方法,用于减少数据集的维度,同时保留尽可能多的信息量。PCA通过旋转数据找到新的坐标轴(主成分),使得新坐标轴上的数据方差最大。这种方法常用于数据可视化、特征选择和去除共线性。 四、t-SNE降维 t-SNE是一种非线性的降维技术,特别适用于高维数据的可视化。它试图保持数据点之间的相对距离,在低维空间中重构高维数据的局部结构。t-SNE通过最大化高维数据中近邻点在低维空间中的相似性和非近邻点的差异性来实现这一目标。 五、实战应用 在实际项目中,无监督聚类和降维技术可以应用于多个领域: 1. 客户细分:通过聚类分析,企业可以将客户分为不同的群体,以便针对每个群体提供定制的产品和服务。 2. 图像分析:PCA可用于图像压缩,而t-SNE有助于可视化复杂的图像数据。 3. 社交网络分析:聚类可以帮助识别社区结构,理解用户之间的关系。 4. 生物信息学:PCA和t-SNE在基因表达数据分析、蛋白质结构研究等领域有着重要作用。 通过实践这些方法,你将能够更好地理解和应用无监督学习,并提高数据探索和分析的能力。项目的具体步骤可能包括数据预处理、选择合适的聚类和降维算法、评估结果以及根据发现的模式进行解释和应用。在这个过程中,你将深化对机器学习理论的理解,并提升解决实际问题的技能。
  • MATLAB累计方差贡献率的
    优质
    本项目运用MATLAB编程语言,开发了一套基于累计方差贡献率的数据降维算法。通过优化数据处理流程,提高数据分析效率与准确性。适用于高维度数据集的有效简化和特征提取。 使用给定的数据模型,在MATLAB程序代码中实现数据降维,并通过方差贡献率来确定最终的降维维度。
  • 二分类
    优质
    本数据集专为二分类监督学习设计,包含标注清晰的训练样本,旨在帮助模型区分两类目标变量,适用于机器学习与数据挖掘研究。 该数据集的前8行用于描述数据信息,后面的每一行代表一个样本,每行包含4列,前三列为特征值,最后一列是对应的数据标签。此数据集适用于监督学习任务。
  • 异常检测:采、半机器技术
    优质
    本研究探讨了利用无监督、半监督和监督机器学习方法进行数据异常检测的技术与应用,旨在提高检测效率和准确性。 在网络入侵的异常检测研究中,数据集通常包含通过主成分分析(PCA)进行降维处理的数据点,并且在无监督学习环境中训练模型时不会使用具体的类别标签。这意呸着,在实际应用中,企业需要验证预测结果的有效性,因为没有明确的事实依据来支持这些结论。 然而,在这项研究中,我们采用了一些特定的方法如隔离林、基于聚类的局部离群因子(CBLOF)、主成分分析(PCA)和椭圆形信封模型进行无监督分类,并且使用了真实标签对预测结果进行了验证。结果显示,所提出的无监督方法能够有效识别出大量的阳性案例。 此外,在半监督学习框架下,我们构建了一个包含84%未标记数据点及16%已标注数据点的数据集。目标是利用这些有限的标注信息来训练模型,并用其对大量未标注样本进行预测分类。为此,采用了自我训练策略结合逻辑回归和随机森林算法来进行实验研究。
  • 的应与方法
    优质
    无监督学习是指机器在没有明确指导的情况下从大量未标记数据中自主发现模式和结构。本课程涵盖无监督学习的各种应用及其核心算法,包括聚类、降维以及自编码器等技术,并探讨其在大数据分析中的作用。 无监督学习是机器学习中的一个重要分支,在诸如机器学习、数据挖掘、生物医学大数据分析以及数据科学等领域具有重要的地位。本书详细介绍了作者在无监督学习领域的研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法和谱图聚类算法;最后还探讨了这些方法在基因选择与疾病诊断中的应用。