
FPGA配置芯片综述
5星
- 浏览量: 0
- 大小:None
- 文件类型:DOC
简介:
本文对FPGA配置芯片进行了全面概述,涵盖了其工作原理、常见类型及应用场景,旨在为读者提供一个清晰的理解框架。
### FPGA配置芯片的深入解析
#### 一、FPGA配置芯片概述
现场可编程门阵列(FPGA)是一种在制造完成后可通过用户编程来实现特定功能的半导体设备。为了使FPGA能够运行,它需要通过加载配置数据来进行初始化,这一过程依赖于专门设计用于存储这些数据的配置芯片。Altera公司(现已被Intel收购)的产品线中包括EPCS和EPC系列配置芯片,它们分别适用于主动配置方式(AS)和被动配置方式(PS)。
#### 二、配置方式详解
**1. 主动配置方式(AS)**
在AS模式下,FPGA控制整个加载过程并引导初始化流程。这种情况下,从外部存储器中读取的配置数据通过DATA0引脚送入FPGA,并由DCLK输入进行同步,每经过一个时钟周期传输一位。
**2. 被动配置方式(PS)**
相比之下,在被动模式下,外部控制器或计算机控制整个加载过程。同样地,配置数据从外部存储部件通过DATA0引脚传送到FPGA中,并在每个DCLK上升沿进行锁存和同步。此过程中可以使用增强型配置器件如EPC16、EPC8等来完成任务。
**3. JTAG配置方式**
JTAG(Joint Test Action Group)接口最初用于芯片测试,现在也被广泛应用于FPGA的配置操作中。它遵循IEEE Std 1149.1标准,并支持JTAG STAPL标准。通过使用Altera下载电缆或主控器可以实现JTAG模式下的配置。
#### 三、配置器件选择
常用的配置器件包括EPC2、EPC1等,其中特别为Cyclone系列FPGA设计的有EPCS系列。随着技术进步,一些新型FPGA开始支持并行配置方式如PPS(Passive Parallel Synchronous)、FPS(Fast Passive Serial)以提高加载速度。
#### 四、配置模式的应用灵活性
在实际应用中,根据系统的具体需求选择不同的配置方法是必要的。例如,在实验系统中可能更倾向于使用PS模式便于通过计算机或控制器进行调试;而在实用环境中则更多地采用AS模式以便于从专用存储芯片获取配置数据实现快速启动和独立运行。
#### 五、配置芯片的隔离与跳线设计
当同时存在下载电缆和配置芯片时,需要适当的隔离措施防止相互干扰。在AS模式下通过设置跳线可以轻松切换不同的工作状态,通常选择10K欧姆作为上拉电阻值以实现灵活性确保无论是在调试阶段还是最终部署都能找到合适的方案。
#### 六、下载电缆的选择
Altera提供了多种类型的下载电缆如ByteBlaster II和USB Blaster等。其中BBII支持各种电压供电(5.5V、3.3V、2.5V及1.8V),并可采用AS、PS或JTAG模式进行配置;相比之下,BBMV仅支持PS和JTAG模式但在成本效益方面仍具有优势。
#### 结语
正确理解与应用FPGA的配置芯片及其工作方式是高效开发的重要环节。这不仅能简化设计流程还能显著提高系统的性能及可靠性。随着技术的发展,未来的FPGA将更加灵活且高效为电子工程领域带来新的机遇和发展空间。
全部评论 (0)


