Advertisement

鲁棒轨迹线性化控制在高超声速再入飞行中的应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究探讨了鲁棒轨迹线性化控制技术在高超声速再入飞行器姿态稳定与控制中的应用,提出了一种有效的方法以增强系统的抗干扰能力和稳定性。 本段落提出了一种针对高超音速飞行器(GHV)再入飞行的轨迹线性化控制(TLC)方案。基本TLC框架构建了一个用于GHV姿态系统的基准控制器,确保沿名义轨迹实现局部闭环指数稳定性。为了增强鲁棒性,将两种策略与基础TLC相结合。一方面,为应对各种干扰,设计了扩展状态观测器以提供补偿控制。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    本研究探讨了鲁棒轨迹线性化控制技术在高超声速再入飞行器姿态稳定与控制中的应用,提出了一种有效的方法以增强系统的抗干扰能力和稳定性。 本段落提出了一种针对高超音速飞行器(GHV)再入飞行的轨迹线性化控制(TLC)方案。基本TLC框架构建了一个用于GHV姿态系统的基准控制器,确保沿名义轨迹实现局部闭环指数稳定性。为了增强鲁棒性,将两种策略与基础TLC相结合。一方面,为应对各种干扰,设计了扩展状态观测器以提供补偿控制。
  • 线智能研究...
    优质
    本研究聚焦于非线性智能控制策略在高超音速飞行器再入过程的应用,旨在提升其稳定性和可控性。通过创新算法优化轨迹跟踪与姿态调整,确保安全高效飞行。 本段落介绍了一种基于B样条函数链接网络扰动观测器(BFLNDO)的高超音速飞行器(HSV)非线性智能再入控制方法。在高超音速飞行器返回地球时,会遇到许多复杂挑战,如严重的非线性和不确定性、环境干扰等。 文章的主要贡献在于提出了一种新的控制策略,并采用非线性广义预测控制(NGPC)算法设计了HSV姿态系统控制律。此外,文中还详细阐述了高超音速飞行器在再入阶段的特点:当这些飞行器从近空间层返回地球时,在无动力状态下进行长时间滑翔。由于大气密度的变化和速度范围的广泛性,HSV具有严重的非线性特性。同时,缺乏广泛的飞行数据、气动弹性效应以及未建模的动力学问题都会增加在再入阶段的不确定性。环境干扰如湍流、阵风和风切变等对这一过程影响巨大。 为了应对这些挑战,本段落提出了一种结合BFLNDO的新方法来解决HSV非线性智能再入控制的问题。NGPC算法用于设计姿态系统的名义控制律,并通过泰勒级数展开进行有限范围内的输出预测;在再入过程中未建模的动态和未知不确定性干扰则由新的BFLNDO估计。 文中还提供了关于BFLNDO与闭环控制系统稳定性的分析,确保了所提出的策略的有效性。文章提到的关键技术和概念包括高超音速飞行器(HSV)、非线性广义预测控制(NGPC)、气动弹性效应、泰勒级数展开以及环境干扰等,并展示了通过仿真模拟结果验证该方法在追踪再入姿态角方面的良好性能。 关键词:高超音速飞行器,再入阶段,非线性预测控制,B样条函数链接网络扰动观测器。
  • 预测机动研究
    优质
    本研究探讨了预测控制技术在高超音速飞行器再入大气层过程中的应用,重点分析其在复杂环境下的机动性能优化和轨迹规划。通过理论推导与仿真试验验证了该方法的有效性及优越性。旨在提高高速飞行器的操控精度和稳定性,为未来航天任务提供技术支持。 本段落是一篇关于超音速再入飞行机动预测控制的研究论文。该研究的重点在于如何利用改进的滑模扰动观测器(ISMDO)以及非线性广义预测控制(NG-PC)方法来管理在高速大气层重新进入过程中,超音速飞行器(Hypersonic Vehicle, HSV)的稳定性。 1. 超音速再入飞行控制:当HSV以极高的速度返回地球时,必须应对极端热流和动力学条件。因此需要精确的算法确保其稳定运行。“maneuvering flight”指的是在这一过程中进行的操作调整。 2. Bank-to-Turn(BTT)控制模式:这种技术利用滚转运动来实现转弯而不产生侧滑,这有助于HSV更平稳地完成再入过程中的机动。 3. 不确定性估计与抑制:由于存在参数不确定性和外部干扰,在超音速飞行器的再入过程中会影响其性能。为了解决这个问题,研究中提出了一种改进的滑模扰动观测器(ISMDO),能够准确地估算这些因素并进行补偿。 4. 非线性广义预测控制(NG-PC):这是一种先进的策略,可以处理多输入输出系统的非线性问题,并能预测未来的行为。通过结合ISMDO和NG-PC方法,设计出一套高效的飞行器机动控制系统。 5. 预测控制策略:文中指出采用基于ISMDO的NG-PC作为HSV再入过程中的主要控制算法,该方法表现出优秀的干扰抑制能力和良好的性能。 6. 超音速飞行器(HSV):指速度超过五倍音速的飞行设备。这类飞行器面临的技术挑战比传统飞机要大得多,包括热力学效应和复杂的飞行动态问题。 7. 扰动观测器(Disturbance Observer):这是一种用于估计并补偿系统扰动影响的方法,可以提高控制系统的鲁棒性。文中提出的ISMDO是对传统方法的改进版本,旨在更精确地估算和处理飞行过程中遇到的各种干扰。 8. 滑模控制(Sliding Mode Control):滑模控制是一种能够增强控制系统稳定性,并且在面对大范围不确定因素时依然有效的策略。“Super-Twisting Slide Mode Disturbance Observer (SMDO)”以及ISMDO都是这一领域的改进技术。 通过上述知识点的详细解释,我们能更深入地理解HSV再入过程中面临的飞行控制挑战,同时也认识到如何运用预测控制和滑模观测器技术来提升其在复杂环境下的性能。
  • 基于模型预测精度运载火箭规划:信赖域序列凸优研究
    优质
    本研究探讨了利用模型预测控制技术结合信赖域序列凸优化方法,实现高精度运载火箭超高速再入阶段的轨迹规划与优化。通过这种方法,提高了再入过程的安全性和效率,为复杂环境下的飞行器导航提供了新思路和解决方案。 本段落探讨了基于模型预测控制制导的高精度运载火箭轨迹规划方法,并研究了信赖域序列凸优化在超高速再入轨迹优化中的应用。具体来说,论文分析了利用信赖域序列凸优化技术进行高超声速再入轨迹优化的有效性,同时结合运载火箭轨迹规划和模型预测控制制导策略的应用情况进行了深入探讨。此外,还对基于信赖域优化的高超声速再入轨迹规划与制导研究进行了详细阐述。
  • 设计及仿真研究
    优质
    本研究聚焦于高超声速飞行器的轨迹优化与仿真技术,旨在探索高效、安全的飞行路径规划方法,提升航空航天任务执行效能。 针对高超声速飞行器的高速度、高升限以及远巡航距离的特点,本研究选取了X-43A型高超声速巡航导弹作为分析对象,对其动力学特性进行了深入探讨,并建立了用于飞行轨迹仿真的气动模型、动力模型和质量模型。此外,还模拟了X-43A的试飞试验中的飞行轨迹,构建了各飞行段弹道仿真模型并进行验证。通过仿真结果可以看出,设计出的飞行轨迹与高超声速飞行器的实际运行情况相符,证明该方法具有可行性和有效性。
  • 四旋翼规划器——Fast-Planner
    优质
    Fast-Planner是一款专为四旋翼飞行器设计的先进轨迹规划软件,旨在提供高效的路径规划与避障功能,确保飞行任务的安全性和稳定性。 快速计划者Fast-Planner旨在实现四旋翼无人机在复杂未知环境中的高速飞行,并包含一系列精心设计的规划算法。 新闻更新: 2021年3月13日:快速自主探索的代码现已发布,详情可查看相关文档。 2020年10月20日:Fast-Planner被扩展并应用于快速自主勘探任务中。具体信息请参阅项目资料。 作者为从和从(注释:原文未提供完整姓名)。 完整的视频演示以及关于此项工作的报道已在IEEE光谱上发布,详情可查阅相关页面内容。 要在几分钟内运行此项目,请参考“快速入门”部分。更多详细信息可在其他章节中查看。请对该项目给予关注和支持,我们致力于持续发展和维护Fast-Planner :beaming_face_with_smiling_eyes: :beaming_face_with_smiling_eyes: 目录: 1. 快速开始 2. 算法与论文 3. 设置和配置 4. 运行模拟 5. 在您的应用程序中使用 项目更新:
  • Clear.zip_lqr_器设计与
    优质
    Clear.zip_lqr_高超声速飞行器设计与飞行控制探讨了高超声速飞行技术中的飞行器设计及线性二次型调节(LQR)控制策略,旨在提升飞行效率和安全性。 本段落以通用高超声速飞行器的纵向模型为研究对象,并针对线性化模型采用极点配置、LQR以及另外一种方法设计控制器,旨在改善系统的性能。
  • 自适_MATLAB_自适
    优质
    本课程聚焦于自适应鲁棒控制理论及其在MATLAB中的实现,深入探讨系统设计中如何结合自适应控制和鲁棒控制技术以增强系统的稳定性和性能。 自适应鲁棒控制的实现可以通过MATLAB代码和Simulink图来完成。
  • 约束与_cplex模型
    优质
    本文章介绍了鲁棒约束和鲁棒优化的概念,并详细探讨了CPLEX软件工具在建立及求解复杂鲁棒优化模型中的应用,提供了解决不确定环境下优化问题的有效途径。 在MATLAB中使用CPLEX求解鲁棒优化模型,并考虑了各种约束条件的书写代码。