Advertisement

原边反馈式开关电源原理详解

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文章深入浅出地讲解了原边反馈式开关电源的工作原理及其应用特点,适合电子工程爱好者和技术人员参考学习。 文档深入浅出地介绍了目前流行的低成本PSR开关电源实现恒流控制的基本原理,非常适合初学者阅读。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文章深入浅出地讲解了原边反馈式开关电源的工作原理及其应用特点,适合电子工程爱好者和技术人员参考学习。 文档深入浅出地介绍了目前流行的低成本PSR开关电源实现恒流控制的基本原理,非常适合初学者阅读。
  • TC2526HA/TC2526HB低功耗芯片技术
    优质
    本文章深入剖析TC2526HA/TC2526HB低功耗原边反馈开关电源芯片的工作原理和技术特点,旨在为工程师提供设计高效率、低成本的电源解决方案。 本段落档详细介绍了低功耗原边反馈(PSR)开关电源芯片TC2526HATC2526HB系列。该系列产品集成了大功率BJT管,并采用了高效的原边反馈控制技术和独有的轻载调频技术,具备待机功耗极低(<75mW)的特点,在隔离型高效低功耗便携式设备充电器的应用中表现突出。此外,芯片还配备了多种保护机制,包括过温保护、VCC欠压保护、输出过压保护以及输出线损补偿技术。 适合从事电子产品设计特别是便携式电子设备电源设计师使用。 该产品适用于智能手机、平板电脑及其他移动终端的高效节能充电器和LED灯驱动电源的设计。在设计时需选用合适的配套元件以确保系统性能符合六级能效标准要求。 文档中提供了详细的电气参数表,应用电路图及保护功能详解等内容,方便工程技术人员深入理解和正确使用该系列产品。
  • 技术中技术
    优质
    本文章探讨了电源技术中的关键组成部分——开关电源,并深入分析其原边反馈技术的工作原理、应用优势及发展前景。 原边反馈(PSR)技术简介 在小功率消费类电子应用领域,反激式电源因其适用于低功耗场景且能够提供天然隔离效果而成为主流选择。 然而,在实现输出电压监控时,通常需要使用光耦等隔离元件来传输信号。这种方法不仅增加了成本,而且光耦的寿命也可能限制整个产品的可靠性。为了克服这些挑战,原边反馈技术应运而生。 与直接从次级端获取输出信息不同,原边反馈技术通过初级线圈采样,并根据初级侧的数据推算出次级电路的状态和输出情况。由于某些关键参数无法仅靠初级线圈来准确获得,因此通常会加入一个辅助绕组以提高检测精度。 需要注意的是,在设计中引入辅助线圈虽然能提升性能但也会增加成本以及系统复杂性。
  • 路工作.docx
    优质
    本文档详细解析了反激式(Flyback)开关电源的工作机制与设计要点,深入探讨其在电力电子领域的应用价值。适合工程师和技术爱好者学习参考。 反激式开关电源电路是电源转换技术中的常见设计之一,在低功率应用场合尤为适用。这种电路结构因其独特的能量传递方式而得名——即在变压器的磁芯中存储并反向传递能量。 一、工作原理 反激式开关电源的工作过程分为两个阶段: 1. 充能阶段(初级导通):在此期间,控制元件如MOSFET或IGBT打开,使输入电压施加于初级线圈上。通过此操作,在变压器的磁芯中存储能量。 2. 放能阶段(次级导通):当开关关闭时,初级电流停止流动。根据电磁感应定律,这会导致次级绕组产生反向电动势,并将储存在磁芯中的能量释放到负载设备。 二、关键组件 1. 开关管:控制元件负责控制电路的开闭。 2. 变压器:用于转换电压并提供电气隔离。 3. 储能电感(即变压器):在充能阶段存储能量,在放能阶段释放能量。 4. 控制电路:包括振荡器、驱动电路和保护电路,以确保开关管的稳定运行频率。 5. 输出滤波器:包含电容和电感元件,用于平滑输出电压并减少纹波。 三、优势 1. 安全隔离:变压器提供电气隔离功能,提高安全性。 2. 结构紧凑:适用于小型化设计需求,特别适合低功率应用场合。 3. 多种输出电压选项:通过调整次级绕组的数量和比例可以实现不同级别的电压输出。 4. 自然稳压特性:在负载变化时,可以通过改变开关频率来保持稳定的输出电压。 四、参数选择 设计反激式开关电源需要考虑以下关键因素: 1. 开关频率:影响变压器及滤波器尺寸大小;较高的工作频率可以减小元件体积但会增加损耗。 2. 变压器设计:涉及磁芯材料、磁通密度和匝比,这些都会直接影响效率与输出电压水平。 3. 最大占空比限制:确定最大输入电压值以及最小输出电压等级,一般不超过50%以确保变压器在合理的工作范围内运行。 4. 安全裕度考虑:需要留出一定的余量来应对温度变化、负载波动和效率下降等情况。 总之,反激式开关电源电路是一种高效且灵活的设计方案,在各类电子产品中得到了广泛应用。深入理解其工作原理及相关参数对于优化设计至关重要,无论是初学者还是经验丰富的工程师都会从中受益匪浅。
  • 的EMC设计
    优质
    拥有三年以上工作经验的专业人士,专注于原边反馈开关电源的电磁兼容性(EMC)设计研究与开发,致力于提高产品性能和稳定性。 《3年经验!原边反馈开关电源EMC设计》 电磁兼容性(EMC)在电子设备的设计中至关重要,其目标是确保设备不会产生过多的电磁干扰,并能抵御外部干扰,以保障系统的稳定性和可靠性。特别是在采用原边反馈技术的AC-DC转换器设计中,EMC更是至关重要的环节。 原边反馈是一种新型的控制技术,在简化电路结构、减少元器件数量和节省电路板空间的同时降低了成本。然而,这种紧凑的设计也带来了更高的电磁兼容性(EMC)与电磁干扰(EMI)要求。由于元件之间的距离减小可能导致相互间的干扰甚至系统故障,因此设计中的主要任务是通过优化PCB布局来降低传输线的不连续性和减少辐射。 在实施EMC设计时,合理的PCB布局至关重要。例如,在初级地线上应合理划分电源输入地、功率地、小信号地和屏蔽地等,并采用“一点接地”原则以确保最短的地线路径,从而有效抑制噪声传播。具体来说,不同元件的连接方式需要遵循特定规则:C8的地线与电源输入相连;R5作为功率地的一部分;C2则用于小信号地;变压器PIN3的屏蔽地同样在C8负端汇集,并尽可能缩短连接长度以减少干扰。 此外,在原边反馈开关电源的设计中,某些元件的选择和参数调整对EMC性能也有重要影响。例如,使用保险电阻代替传统保险丝可以降低150K~5M范围内的差模干扰;输入滤波电容(如C1、L2及C8)的容量选择会影响峰值电流与母线电压,并进一步影响到EMC性能。同时,R6和D2元件组合虽然有利于传导特性但可能增加空间辐射问题;电流检测电阻R5的选择会影响到峰值电流以及过功率保护(OPP)机制的有效性;VCC电压设定需在空载与满载状态下保持平衡以防止对EMC造成不利影响;而作为电压补偿的电容(如C5)其容量大小会直接影响到采样速率,从而进一步影响电流纹波和系统的EMC性能。 综上所述,在原边反馈开关电源的设计过程中,元件选择、参数优化以及PCB布局等多方面细节都会对最终电磁兼容性产生重要影响。设计者需要具备深厚的理论基础及丰富的实践经验,并且能够敏锐地识别干扰源,才能开发出符合标准并具有优异EMC性能的开关电源系统。
  • 工作
    优质
    本文章深入解析了反激式开关电源的工作原理,包括其基本结构、工作模式及应用特点,旨在帮助读者全面了解这一高效的电力转换技术。 反激式开关电源使用一种特殊的高频变压器来隔离输入与输出回路。这种“反激”特性指的是,在开关管接通的情况下,当输入电压为高电平时,串联在输出线路中的电感处于放电状态;而在开关管断开时,则变为充电状态。这和另一种称为“正激”的方式相反:后者中,当输入电压为高电平时,输出线路的串联电感处在充电阶段。 单端反激式变换器的特点是在晶体管关断期间由变压器向负载提供能量。具体来说,在开关晶体管导通时(Tr ton),初级绕组Np储存了能量;而在其关闭后(Tr off),通过次级绕组Ns,二极管D正向偏置并开始传导电流至输出端。 反激变换器的工作原理在于:当输入电压施加到变压器原边绕组上时,它会将电能存储起来。然后,在开关断开的瞬间,根据楞次定律(e = -N△Φ/△t),在初级线圈中会产生一个反向电动势,并通过二极管D传递给负载。
  • 路图
    优质
    反激式开关电源是一种常用的电力变换技术,通过变压器实现能量存储与释放。本资源提供详细的电路设计和工作原理解析,适用于电子工程师和技术爱好者深入学习。 反激式开关电源原理图:这是一份很好的反激式电源开发设计的参考图表。
  • 图和PCB
    优质
    本资料详细介绍了反激式开关电源的工作原理,并提供了电路设计的原理图及完整的PCB布局文件。适合电子工程师参考学习。 反激式开关电源原理图及PCB设计适用于36W的电源,并且纹波控制在20mV。
  • 5W低功耗AC-DC决方案 - AP8012H 12V 0.5A EE16 版 V1.3
    优质
    AP8012H是一款高效的5W低功耗AC-DC电源解决方案,采用EE16磁芯和原边反馈技术,提供稳定的12V/0.5A输出电压,适用于多种电子设备。 5瓦小功率电源(AC-DC)方案的最佳供电方案是AP8012H-12V-0.5A-EE16原边反馈原理图版本V1.3。
  • 的工作(CCM与DCM)
    优质
    本文深入探讨了反激式开关电源在连续导通模式(CCM)和断续导通模式(DCM)下的工作机理及其特性。 反激开关电源主电路的工作原理包括电感电流连续模式和不连续模式的公式对比,这有助于从真正意义上理解反激电路。