Advertisement

SQL Server 2017 查询性能调优

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《SQL Server 2017查询性能调优》一书专注于指导读者如何优化数据库查询以提高SQL Server 2017系统的运行效率和响应速度,涵盖索引选择、统计信息更新及执行计划分析等关键技巧。 《SQL Server 2017 Query Performance Tuning》是一本专为数据库管理员和开发人员编写的经典指南,专注于提升SQL Server 2017查询性能的优化策略。作者Grant Fritchey是一位经验丰富的IT专家,在书中深入探讨了如何识别并解决SQL查询中的性能问题以提高系统的整体效率。 本书涵盖了以下核心知识点: 1. **查询优化基础**:介绍了SQL Server查询处理的基本原理,包括执行计划、关系代数和索引的工作机制,并讲解了阅读和理解执行计划的方法,帮助读者识别潜在的性能瓶颈。 2. **索引策略**:详细解释各种类型的索引(如B树索引、聚集索引、非聚集索引、覆盖索引及全文索引)及其对查询性能的影响。书中还提供了创建与管理这些索引来优化查询的具体方法。 3. **查询改写与重写**:讨论了如何通过修改和改进SQL语句来避免全表扫描,利用连接优化、子查询优化以及窗口函数等技术提高查询效率。 4. **资源管理**:讲解了资源调度器(Resource Governor)及内存管理的使用方法。书中还介绍了限制并调整工作负荷以确保关键任务获得足够系统资源的技术和策略。 5. **性能监视与诊断**:介绍SQL Server内置的性能监控工具,如动态管理视图(DMVs)、性能计数器以及查询存储(Query Store),指导读者如何利用这些工具识别问题,并进行故障排除。 6. **并发与锁定**:阐述了事务处理中的并发控制机制,包括隔离级别和行版本控制。书中还提供了减少死锁及资源竞争的方法。 7. **并行查询**:分析了启用并行查询的优缺点及其调整方法,帮助读者判断是否应使用并行执行来优化性能。 8. **统计与基数估计**:讨论了准确统计数据在改进查询计划选择中的作用,并指导如何创建和维护这些数据以提高效率。 9. **查询缓存与计划重用**:解释了SQL Server的查询缓存机制以及何时不建议使用计划重用来避免对性能的影响,同时提供了优化策略。 10. **硬件与架构优化**:探讨了CPU、内存、磁盘IO和网络等硬件配置如何影响数据库系统的性能,并提出了相应的改进措施。 11. **In-Memory OLTP**:介绍了SQL Server 2017中的内存优化表及列存储索引,以及利用这些特性来提高事务处理速度的方法。 12. **高级话题**:涵盖了分布式查询、XML和JSON的处理方法,大数据集成等主题,并提供了如何通过使用这些特性进行性能调优的具体建议。 《SQL Server 2017 Query Performance Tuning》为读者提供了一套全面而实用的技术指南,帮助数据库专业人士针对特定环境制定有效的性能优化策略。无论是初学者还是资深专家都能从中获得有价值的见解和实践指导。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SQL Server 2017
    优质
    《SQL Server 2017查询性能调优》一书专注于指导读者如何优化数据库查询以提高SQL Server 2017系统的运行效率和响应速度,涵盖索引选择、统计信息更新及执行计划分析等关键技巧。 《SQL Server 2017 Query Performance Tuning》是一本专为数据库管理员和开发人员编写的经典指南,专注于提升SQL Server 2017查询性能的优化策略。作者Grant Fritchey是一位经验丰富的IT专家,在书中深入探讨了如何识别并解决SQL查询中的性能问题以提高系统的整体效率。 本书涵盖了以下核心知识点: 1. **查询优化基础**:介绍了SQL Server查询处理的基本原理,包括执行计划、关系代数和索引的工作机制,并讲解了阅读和理解执行计划的方法,帮助读者识别潜在的性能瓶颈。 2. **索引策略**:详细解释各种类型的索引(如B树索引、聚集索引、非聚集索引、覆盖索引及全文索引)及其对查询性能的影响。书中还提供了创建与管理这些索引来优化查询的具体方法。 3. **查询改写与重写**:讨论了如何通过修改和改进SQL语句来避免全表扫描,利用连接优化、子查询优化以及窗口函数等技术提高查询效率。 4. **资源管理**:讲解了资源调度器(Resource Governor)及内存管理的使用方法。书中还介绍了限制并调整工作负荷以确保关键任务获得足够系统资源的技术和策略。 5. **性能监视与诊断**:介绍SQL Server内置的性能监控工具,如动态管理视图(DMVs)、性能计数器以及查询存储(Query Store),指导读者如何利用这些工具识别问题,并进行故障排除。 6. **并发与锁定**:阐述了事务处理中的并发控制机制,包括隔离级别和行版本控制。书中还提供了减少死锁及资源竞争的方法。 7. **并行查询**:分析了启用并行查询的优缺点及其调整方法,帮助读者判断是否应使用并行执行来优化性能。 8. **统计与基数估计**:讨论了准确统计数据在改进查询计划选择中的作用,并指导如何创建和维护这些数据以提高效率。 9. **查询缓存与计划重用**:解释了SQL Server的查询缓存机制以及何时不建议使用计划重用来避免对性能的影响,同时提供了优化策略。 10. **硬件与架构优化**:探讨了CPU、内存、磁盘IO和网络等硬件配置如何影响数据库系统的性能,并提出了相应的改进措施。 11. **In-Memory OLTP**:介绍了SQL Server 2017中的内存优化表及列存储索引,以及利用这些特性来提高事务处理速度的方法。 12. **高级话题**:涵盖了分布式查询、XML和JSON的处理方法,大数据集成等主题,并提供了如何通过使用这些特性进行性能调优的具体建议。 《SQL Server 2017 Query Performance Tuning》为读者提供了一套全面而实用的技术指南,帮助数据库专业人士针对特定环境制定有效的性能优化策略。无论是初学者还是资深专家都能从中获得有价值的见解和实践指导。
  • SQL Server 2008 .pdf
    优质
    本书详细介绍了如何在SQL Server 2008中进行查询性能优化的技术和方法,包括索引使用、统计信息更新及执行计划分析等内容。 SqlServer2008查询性能优化涉及多个方面,包括但不限于索引的创建与维护、查询语句的编写技巧以及数据库设计策略。为了提高查询效率,可以考虑分析慢查询日志找出瓶颈,并对表结构进行合理的调整以适应业务需求的变化。同时,合理使用统计信息可以帮助SQL Server生成更优的执行计划。 此外,定期监控和优化系统资源分配也是保持性能的关键因素之一。例如通过观察CPU、内存等硬件指标来判断是否需要进一步调整配置或升级服务器规格。在某些情况下,引入分区技术能够显著改善大规模数据集上的查询速度。 最后但同样重要的是关注数据库维护工作如重建索引、整理碎片以及定期执行更新统计信息操作以确保系统持续高效运行。
  • SQL Server技巧:提升速度的五种方案
    优质
    本文章介绍了提高SQL Server查询速度的五大优化策略,旨在帮助数据库管理员和开发人员有效改善系统性能。 本段落主要通过以下几个方面进行介绍:使用SQLDMV查找慢速查询、利用APM解决方案生成报告、SQLServer扩展事件以及SQLAzure查询性能洞察等内容。文章由火龙果软件Anna编辑并推荐发布。SQLServer的一个重要功能是其内置的动态管理视图(DMV)。这些视图有数十种,可以提供关于各种主题的详细信息。其中一些DMV特别有助于监控和优化数据库性能。
  • SQL Server技巧:提升速度的五大策略
    优质
    本教程深入讲解了五种关键策略,旨在帮助数据库管理员和开发人员优化SQL Server性能,特别是加速查询响应时间。通过实施这些技巧,可以显著提高系统的整体效率和用户满意度。 本段落主要从以下几个方面进行介绍:使用SQLDMV查找慢速查询、通过APM解决方案生成报告、利用SQLServer扩展事件以及运用SQLAzure查询性能洞察等相关内容。文章由火龙果软件Anna编辑并推荐。 在SQL Server中,一个关键特性是内置的动态管理视图(DMVs)。这些视图有数十种之多,并能够提供关于各种主题的详尽信息。其中一些DMV提供了有关查询统计、执行计划和最近运行查询的数据。通过组合使用这些工具,可以获得有价值的洞见。 例如,可以通过下面提供的查询来查找读取次数最多、写入操作最多或CPU时间消耗最多的特定查询: ``` -- 示例SQL代码 SELECT TOP 10 qs.total_logical_reads, -- 总逻辑读取数 qs.total_physical_reads, -- 总物理读取数 qs.total_worker_time / 1000 AS Total_CPU_Time_ms, -- 计算CPU时间(毫秒) q.text, qp.query_plan FROM sys.dm_exec_query_stats AS qs CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS q CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) AS qp ORDER BY qs.total_logical_reads DESC; ``` 上述查询将返回资源使用率最高的前十个查询。下面的图片展示的是我制作的一个营销应用中特定查询的表现情况,可以看到一个单独的查询占据了大部分的系统资源。 以上介绍的内容主要帮助数据库管理员和开发者更好地理解和优化SQL Server性能问题。
  • MySQL 8 .pdf
    优质
    本书深入剖析了MySQL 8数据库查询性能优化策略与技巧,旨在帮助读者提升系统响应速度和数据处理效率。适合数据库管理员及开发人员阅读学习。 MySQL 8 查询性能调优技巧全网首发。
  • PostgreSQL化之慢指南
    优质
    本文提供了一套针对PostgreSQL数据库中慢查询问题的优化策略和技巧,旨在帮助用户提升系统的响应速度与稳定性。 1. 直接创建索引 2. 修改条件以使用索引 3. 避免在where子句中对字段进行运算,以免查询规划器放弃使用index 4. 尽量避免在where子句中强制转换字段类型,导致查询规划器不使用index 5. 减少不必要的outer join和sub-query层级数【不影响结果正确性的前提下】 6. 避免select * 和冗余字段的使用 7. 表达式索引 8. 部分索引 9. 分解DDL(数据定义语言)语句以优化性能 10. 综合优化策略 11. 索引创建方法 12. 查找并删除无用的索引 13. 检测重复索引 14. 识别需要维护的索引,并自行编写索引维护SQL语句 15. 示例:一个index size影响query plan的情况
  • SQL Server多表化策略汇总
    优质
    本文章全面总结了在使用SQL Server进行数据库操作时,提高多表查询效率的方法与技巧,适合数据库管理人员和技术开发者参考。 SQL Server多表查询的优化是本段落的重点内容。我们不仅介绍了优化方案,还提供了具体的实例来帮助理解。 1. 执行路径:Oracle 提供的功能显著提高了 SQL 的执行性能并节省了内存使用。例如,单表数据统计和多表联合统计的速度差异很大。单表统计可能只需要0.02秒,而两张表的联合统计则可能需要几十秒的时间。这是因为 Oracle 只对简单的表格提供高速缓存功能(cache buffering),这种功能并不适用于多表连接查询。 数据库管理员必须在 init.ora 文件中为这个区域设置合适的参数。当该内存区域越大时,就可以保留更多的语句,并且被共享的可能性也相应提高。
  • SQL Server多表化策略汇总
    优质
    本文章全面总结了在SQL Server中进行多表查询时的性能优化策略,涵盖索引调整、查询重写及分区技术等关键方法。 在SQL Server中,多表查询优化对于提升数据库性能至关重要,特别是在大数据量的环境中。本段落将深入探讨几个关键的优化策略,以帮助改善SQL Server多表查询的效率。 1. **执行计划优化**:执行计划是SQL Server解析查询并确定如何执行它的过程。优化执行计划的关键在于减少数据扫描和提高缓存利用。SQL Server使用查询优化器来选择最佳执行路径。在多表查询中,考虑使用`JOIN`语句的顺序和类型(如`INNER JOIN`, `LEFT JOIN`等)以及是否使用索引来改善执行计划。对于大型表,应优先处理记录较少的表,这有助于减少数据处理量。 2. **选择正确的JOIN顺序**:在FROM子句中,表的顺序会影响查询性能。通常,应将记录数少的表放在JOIN操作的前面,这样可以先处理小表,减少需要匹配的数据量。例如,如果表A有100万行,表B有1000行,那么将B与A JOIN通常比A与BJOIN更有效率。 3. **WHERE子句的条件排列**:WHERE子句中的条件顺序也影响查询效率。SQL Server从上到下解析条件,所以应该将过滤效果最明显的条件放在因为这些条件可以更快地减少结果集大小。对于子查询,确保它们尽可能靠近JOIN操作或放置在WHERE子句的最后。 4. **避免使用SELECT ***:在SELECT语句中,避免使用通配符*来选择所有列。这样做会导致SQL Server在运行时动态解析列名,增加解析时间。相反,明确指定所需的列,这有助于优化查询计划并减少不必要的数据传输。 5. **减少数据库访问次数**:多次访问数据库会增加服务器负载。尝试通过合并查询来减少访问次数,例如使用子查询或者联接操作来获取多个表的相关数据。同时,利用存储过程和批处理来一次性处理多个操作,而不是单独执行每个请求。 6. **使用覆盖索引和物化视图**:覆盖索引包含查询所需的所有列,避免了回表操作,从而提高查询速度。物化视图预先计算并存储查询结果,对于重复的复杂查询特别有用。 7. **适当的索引策略**:创建合适的索引可以显著提高JOIN操作的性能。对JOIN条件和WHERE子句中的频繁过滤条件建立索引。同时,注意索引维护的成本,过多的索引可能导致插入和更新操作变慢。 8. **使用临时表或表变量**:在处理大量数据时,临时表或表变量可以存储中间结果,减少内存压力和多次查询的开销。 9. **监控和调整统计信息**:保持统计信息的最新性有助于SQL Server做出更准确的查询计划。定期执行`UPDATE STATISTICS`命令以反映数据的最新分布。 10. **使用查询提示**:在某些情况下,可以使用查询提示(如`OPTION(RECOMPILE)`或`OPTION(USE PLAN)`)强制SQL Server使用特定的执行计划,但应谨慎使用,因为过度依赖提示可能会导致其他查询的性能下降。 通过以上策略,你可以有效地优化SQL Server的多表查询,提升数据库系统的整体性能。然而,优化是一个持续的过程,需要结合实际工作负载和数据库结构进行调整。
  • SQL Server语法
    优质
    本教程详细讲解了SQL Server中子查询的使用方法和相关语法,帮助数据库开发者掌握如何嵌套查询以解决复杂数据检索需求。 表ta包含字段userno(编号)和username(名字),表tb包含字段userno(编号)和score(分数)。为了查询结果包括userno(编号)、username(名字)以及对应的score(分数),可以通过子查询将表ta中的姓名匹配过来。在SQL语言中,子查询允许在一个主查询语句内嵌套另一个查询语句。
  • Hive SQL
    优质
    本课程专注于Hive SQL的优化技巧与方法,旨在帮助数据分析师和工程师提升查询效率,深入讲解分区、桶等高级特性及调优策略。 ### Hive SQL性能优化详解 #### 一、Hive SQL执行顺序及原理 了解Hive SQL的执行顺序有助于我们写出更高效且高质量的代码。Hive SQL的执行大致可以分为以下几个步骤: 1. **确定数据源**:首先,明确查询的数据来源,包括表连接类型(如LEFT JOIN、RIGHT JOIN、INNER JOIN等)。 2. **过滤数据**:根据WHERE子句中的条件对数据进行初步筛选。 3. **分组和聚合**:通过GROUP BY语句将数据分成不同的组,并使用HAVING子句进一步筛选这些分组的结果。 4. **查询具体字段或表达式**:SELECT子句定义了需要返回的具体字段或者计算的表达式。 5. **最终结果展示**:DISTINCT、ORDER BY和LIMIT等命令用于确定如何显示最终的查询结果。 #### 二、Hive SQL执行流程分析 Hive SQL的执行通常分为Map阶段和Reduce阶段: 1. **Map阶段**: - 表查找与加载:从数据源中获取需要的数据。 - 条件过滤:在WHERE子句中实现数据筛选条件的应用。 - 输出项选择:根据SELECT子句确定输出字段,减少不必要的计算量。 - 分组操作:执行GROUP BY语句对数据进行分组处理。 - Map端文件合并:对Map阶段产生的中间结果文件进行合并。 2. **Reduce阶段**: - 数据分组与计算:在接收到来自Map任务的数据后,根据需求对其进行进一步的分组和聚合运算。 - 结果筛选:执行SELECT子句中的字段过滤操作。 - 结果排序及输出限制:通过ORDER BY和LIMIT命令对结果进行排序并限定返回的数量。 #### 三、Hive SQL优化技巧与注意事项 1. **列裁剪和分区裁剪**: - 分区裁剪:在WHERE子句中指定查询特定的分区,避免全表扫描以提高效率。 - 列裁剪:只选择必要的字段减少数据传输量及处理开销。 2. **谓词下推优化配置**: - 启用`hive.optimize.ppd=true`选项,将过滤条件尽可能提前执行,从而减少后续的数据处理负担。例如: ```sql -- 谓词下推示例:在JOIN操作中立即应用WHERE子句中的筛选条件。 SELECT ename, dept_name FROM E LEFT OUTER JOIN D ON (E.dept_id = D.dept_id AND E.eid = HZ001); -- 非谓词下推示例:先进行表连接,后执行过滤操作。 SELECT ename, dept_name FROM E LEFT OUTER JOIN D ON E.dept_id = D.dept_id WHERE E.eid = HZ001; ``` 3. **使用SORT BY替代ORDER BY**: - ORDER BY会导致所有数据进入同一个Reduce任务中进行排序,适用于小规模查询;而SORT BY可以在多个Reduce任务上执行局部排序操作以提高效率。 - 示例代码如下所示: ```sql SELECT uid, upload_time, event_type, record_data FROM calendar_record_log WHERE pt_date >= 20190201 AND pt_date <= 20190224 DISTRIBUTE BY uid SORT BY upload_time DESC, event_type DESC; ``` 4. **使用GROUP BY替代DISTINCT**: - 在大数据量场景下,COUNT(DISTINCT)会导致大量数据汇聚到少数Reduce任务中从而降低效率;通过GROUP BY进行分组计数可以有效分散计算负载。 - 示例代码如下所示: ```sql -- 原始查询:使用COUNT(DISTINCT id) SELECT COUNT(DISTINCT id) FROM tableA WHERE date = 2020-08-10 AND id IS NOT NULL; -- 替代方案:通过GROUP BY实现分组计数。 SELECT COUNT(a.uid) FROM (SELECT id FROM tableA WHERE id IS NOT NULL AND date = 2020-08-10 GROUP BY id) a; ``` 通过对Hive SQL执行顺序的理解及采用适当的优化策略,可以显著提升查询性能。在实际应用中,开发人员应根据具体需求灵活运用这些技巧以达到最佳效果。