Advertisement

一种低能耗的64倍降采样多级数字抽取滤波器设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种创新的64倍降采样多级数字抽取滤波器设计方案,显著降低了能量消耗,并保持了高效的信号处理能力。 摘要:经典多级结构的数字抽取滤波器消耗了系统大量的功耗与面积资源。本段落设计了一种改进型64倍降采样数字抽取滤波器,该滤波器由级联积分梳状(CIC)滤波器、补偿FIR 滤波器和半带滤波器组成,在保证∑- Δ ADC 转换精度的前提下,实现了降低系统功耗与面积的设计目标。在多级级联积分梳状(CIC)滤波器设计中,通过充分运用置换原则优化各级级数,并采用非递归结构实现方式;同时,将多相结构应用于补偿滤波器和半带滤波器之中,从而显著降低了电路的功耗与面积。通过使用∑- Δ调制器输出信号作为测试激励,在Matlab 系统仿真、FPGA 验证及FFT 信号分析后得出:该设计能够达到15位有效精度,并且系统的速度也满足了要求。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 64
    优质
    本研究提出了一种创新的64倍降采样多级数字抽取滤波器设计方案,显著降低了能量消耗,并保持了高效的信号处理能力。 摘要:经典多级结构的数字抽取滤波器消耗了系统大量的功耗与面积资源。本段落设计了一种改进型64倍降采样数字抽取滤波器,该滤波器由级联积分梳状(CIC)滤波器、补偿FIR 滤波器和半带滤波器组成,在保证∑- Δ ADC 转换精度的前提下,实现了降低系统功耗与面积的设计目标。在多级级联积分梳状(CIC)滤波器设计中,通过充分运用置换原则优化各级级数,并采用非递归结构实现方式;同时,将多相结构应用于补偿滤波器和半带滤波器之中,从而显著降低了电路的功耗与面积。通过使用∑- Δ调制器输出信号作为测试激励,在Matlab 系统仿真、FPGA 验证及FFT 信号分析后得出:该设计能够达到15位有效精度,并且系统的速度也满足了要求。
  • DTFT1_FIR_频率法实现FIR
    优质
    本项目采用频率取样法设计了一种基于DTFT的FIR低通数字滤波器,实现了对信号的有效频段内平滑过渡及阻带抑制。 在数字信号处理领域,滤波器是至关重要的组成部分,用于调整信号的频谱特性。本段落将深入探讨“DTFT1_低通滤波_fir低通滤波器_频率取样法设计FIR低通数字滤波器”这一主题,主要关注使用频率取样法来设计有限冲激响应(Finite Impulse Response, FIR)低通数字滤波器的过程及其在输入信号处理中的应用。 首先了解什么是FIR滤波器。这是一种线性相位且稳定的数字滤波器,其单位脉冲响应具有有限长度,在某个时间点后会归零。与无限冲激响应(Infinite Impulse Response, IIR)滤波器相比,FIR滤波器通常具备更好的线性相位特性,并在设计时更容易实现这种特性。 低通滤波器允许通过信号中的低频部分,同时衰减高频成分,在图像平滑和音频降噪等领域应用广泛。数字领域中,FIR低通滤波器是通过一系列称为权系数或taps的数值来定义其频率响应特性的。 设计FIR低通滤波器常用的方法之一就是使用频率取样法,这种方法基于离散时间傅立叶变换(Discrete-Time Fourier Transform, DTFT)的概念。DTFT描述了连续频谱与离散时间序列之间的关系,并通过复数函数表示不同频率成分的放大倍数。 设计过程包括: 1. **定义滤波器规格**:确定目标截止频率、阻带衰减及过渡带宽度等参数,这些将决定滤波器性能。 2. **频率取样**:在理想低通响应曲线上选择一系列点,通常为均匀间隔的值。理想的低通曲线在通过范围内等于1,在阻止范围则为0。 3. **逆DTFT变换**:对所选样本进行逆DTFT运算以获得滤波器系数序列(即脉冲响应);这一步一般利用离散傅立叶变换(Discrete Fourier Transform, DFT)的反向操作实现,即IDFT算法。 4. **调整系数**:为了确保因果性和稳定性,并改善线性相位等性能指标,可能需要对计算出的系数进行额外处理,比如应用窗函数技术。 5. **实施与测试**:将优化后的系数应用于FIR滤波器结构中(如直接型I、II、III或IV形式),并用实际信号加以验证其效果。 文件“DTFT1.m”可能包含MATLAB代码实例来展示如何利用频率取样法设计和实现一个FIR低通数字滤波器。该程序通常会包括定义规格、执行采样步骤以及逆变换等操作,最终观察到的将是所生成滤波器的具体频响特性和过滤结果。 总的来说,通过采用频率取样法来定制特定需求下的FIR低通滤波器是实现信号优化处理的有效手段之一。这种技术能够有效地降低输入信号中的高频噪声,并保留其重要的低频信息,在实际应用中具有重要意义和价值。
  • 基于频率FIR方法
    优质
    本研究提出了一种基于频率抽样技术的有限脉冲响应(FIR)数字低通滤波器的设计方案,能够有效实现理想的低频信号保留与高频噪声抑制。 已经成功完成了使用频率抽样法设计FIR数字低通滤波器的工作,并且参考文献和程序代码均已包含在内。
  • 微弱集电路
    优质
    本设计提出了一种高效的低能耗微弱能量采集电路,旨在有效收集环境中的微弱能量并转换为可利用电能,适用于物联网设备等场景。 为了高效地收集环境中的微弱能量,设计了一种低功耗的微弱能量收集电路。该电路采用LTC3588-1电源管理芯片为核心的电压变换电路、LTC4071充电控制芯片为核心的充电控制电路以及TPL5100为核心的定时器电路搭建而成。这种设计能够将收集到的微弱能量转换为电能,并将其存储在锂电池中或直接提供给负载供电。实验结果表明,所设计的低功耗微弱能量收集电路成功实现了对微弱能量的有效收集,其自身平均功耗仅为182μW。这验证了利用该技术向无线传感器网络节点供能的可能性。由于具有低功耗和低成本的特点,这种电路具备广泛的应用前景。
  • 基于频率FIR开发
    优质
    本项目致力于研究并实现一种基于频率取样的FIR(有限脉冲响应)数字低通滤波器的设计方法。通过精确控制过渡带和阻带特性,优化了信号处理性能,为音频及通信领域提供了高效的解决方案。 采用频率取样设计法设计FIR数字低通滤波器需要满足一定的指标要求。
  • 基于频率FIR
    优质
    本文章探讨了利用频率采样技术进行有限脉冲响应(FIR)数字滤波器的设计方法,旨在优化滤波性能与计算效率。 基于频率采样法的FIR数字滤波器设计是一个详细且复杂的过程,适合初学者和深入研究者学习。该过程涵盖了从理论基础到实际应用的所有方面,旨在帮助读者全面理解如何利用频率采样技术来设计高效、精确的FIR滤波器。
  • IIR
    优质
    本简介探讨了数字信号处理中IIR(无限脉冲响应)类型的低通滤波器的设计方法。通过分析和实现不同的设计方案,文章旨在优化频率响应特性,减少计算复杂性,并提高滤波效果。 摘 要 目 录 第1章 滤波器简介 1.1 滤波器的工作原理 1.1.1 模拟滤波器的工作原理 1.1.2 数字滤波器的工作原理 1.2 滤波器的基本特性 1.2.1 模拟滤波器与数字滤波器的基本特性 1.2.2 无限冲击响应IIR和有限冲击响应FIR滤波器 1.3 滤波器的主要技术指标 第2章 模拟滤波器的设计 2.1 模拟滤波器的设计方法 2.2 模拟原型滤波器及最小阶数的选择 2.2.1 巴特沃斯滤波器及最小阶数的选择 2.2.2 低通原型滤波器的系统函数 2.2.3 椭圆滤波器及最小阶数的选择 2.2.4 贝塞尔滤波器 第3章 IIR数字滤波器的设计 3.1 IIR数字滤波器的设计方法 3.2 IIR滤波器经典设计 3.3 IIR滤波器直接设计 第4章 DSP仿真系统 4.1 对低通模拟和数字滤波器的仿真 4.1.1 模拟低通滤波器的仿真 4.2.2 数字低通滤波器的仿真 4.4.1 模拟带通滤波器的仿真 4.4.2 数字带通滤波器的设计 4.5 对带阻模拟和数字滤波器的仿真 4.5.1 模拟带阻滤波器的设计 4.5.2 数字带阻滤波器的仿真 第5章 总结与展望 5.1 总 结 5.2 展 望
  • 基于FPGA下变频
    优质
    本项目旨在设计并实现一种基于FPGA的高效数字下变频抽取滤波器,以优化信号处理性能和资源利用率。 为满足软件无线电接收机数字下变频过程中的高速数字信号降采样需求,本段落设计了一种采用半带滤波器前置的多级抽取滤波器架构,并结合了半带滤波器与级联积分梳状滤波器的特点。通过Simulink工具建立系统模型进行验证后,在Xilinx xc5vsx95t-2ff1136 FPGA平台上利用Xilinx ISE 12.3软件实现了下采样率为64的抽取滤波器。Modelsim仿真结果证实了该设计的有效性,达到了预期的设计指标。
  • 温度系带隙基准源
    优质
    本文介绍了一种创新性的带隙基准源设计方案,该方案在保证性能的前提下实现了更低的工作功耗和更小的温度影响系数。通过优化电路结构与参数选择,新方法显著提升了电子设备的稳定性和能效表现。 本段落设计了一种低温漂低功耗且无需trim的基准电压源,并采用低压共源共栅电流镜来减少输出电压对电源电压的影响。测试结果表明:电路在2 V电源电压下即可正常工作,输出基准电压为1.326 65 V;温度范围从-40℃到+85℃时,温漂系数仅为2.563 ppm/°C;当电源电压为3.3 V时,功耗低至2.81 μW。该电路适用于移动电子设备的应用场景。